Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Model.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2005, Volume 17, Number 10, Pages 47–78 (Mi mm2804)  

This article is cited in 10 scientific papers (total in 10 papers)

About an opportunity of synergetic birth of mesoscale coherent structures in the macroscopic theory of a developed turbulence

A. V. Kolesnichenko

M. V. Keldysh Institute for Applied Mathematics, Russian Academy of Sciences
References:
Abstract: The purpose of paper is the development of the continuum theory of a structured turbulence of shift fluxions of a fluid simulated total two of interpenetrative continuums, from which one first falls into to an average field of a turbulent motion, and second – to the turbulent time-space chaos including and band of mesoscale coherent structures, localized in space. It is considered, that the mesoscale structures at magnification supercriticality are generated by small-scale vortex formations, which one in two-level model of a turbulence are featured in padding interior parameters of chaos, for example, generalized angular velocities describing a vorticities of a pulsation hydrodynamic field. The opportunity of synergetic birth of mesoscale coherent structures from turbulent chaos (far from complete chaos of athermodynamic equilibrium) is considered at the expense of a phase locking concerning large small-scale vortexes (maximum oscillations inside some spectral interval) at the presence of a noise, connect with “thermal” structure of a vortex continuum. The similar mechanism of forming and evolution of coherent structures in thermodynamical open subsystem of turbulent chaos is interpreted from the point of view of the theory of dynamic systems. The attempted examination is aimed at development of a series of representative hydrodynamic models of space environments, including evolution of a solar System, appearance of turbulent transport on planets and in their atmospheres, problem of an ecology etc. It is prolongation of the stochastics-thermodynamic approach to synergetic exposition of a structured turbulence of astro-geophysical systems developed by the writer in a series of articles [1–3].
Received: 12.04.2004
Bibliographic databases:
Language: Russian
Citation: A. V. Kolesnichenko, “About an opportunity of synergetic birth of mesoscale coherent structures in the macroscopic theory of a developed turbulence”, Mat. Model., 17:10 (2005), 47–78
Citation in format AMSBIB
\Bibitem{Kol05}
\by A.~V.~Kolesnichenko
\paper About an opportunity of synergetic birth of mesoscale coherent structures in the macroscopic theory of a~developed turbulence
\jour Mat. Model.
\yr 2005
\vol 17
\issue 10
\pages 47--78
\mathnet{http://mi.mathnet.ru/mm2804}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2210470}
\zmath{https://zbmath.org/?q=an:1095.37502}
Linking options:
  • https://www.mathnet.ru/eng/mm2804
  • https://www.mathnet.ru/eng/mm/v17/i10/p47
  • This publication is cited in the following 10 articles:
    1. A. V. Kolesnichenko, “K teorii spiralnoi turbulentnosti nemagnitnogo astrofizicheskogo diska. Obrazovanie krupnomasshtabnykh vikhrevykh struktur”, Preprinty IPM im. M. V. Keldysha, 2024, 009, 56 pp.  mathnet  crossref
    2. A. V. Kolesnichenko, “Modification alpha formalism of Shakura–Sunyaev for the coefficient of turbulent viscosity in an astrophysical disk of finite thickness”, Preprinty IPM im. M. V. Keldysha, 2022, 001, 32 pp.  mathnet  crossref
    3. Blank A., Suhareva N., Tsyganov M., “Discrimination Information For Intensity Distributions of a Collimated Wave Beam”, Chaos Solitons Fractals, 152 (2021), 111469  crossref  mathscinet  isi
    4. N. N. Fimin, V. M. Chechetkin, “Kogerentnye gidrodinamicheskie struktury i vikhrevaya dinamika”, Preprinty IPM im. M. V. Keldysha, 2015, 001, 35 pp.  mathnet
    5. O. M. Belotserkovskii, N. N. Fimin, V. M. Chechetkin, “Coherent hydrodynamic structures and vortex dynamics”, Math. Models Comput. Simul., 8:2 (2016), 135–148  mathnet  crossref  mathscinet  elib
    6. A. V. Kolesnichenko, “K modelirovaniyu szhimaemoi magnitogidrodinamicheskoi turbulentnosti akkretsionnogo protoplanetnogo diska”, Preprinty IPM im. M. V. Keldysha, 2014, 066, 47 pp.  mathnet
    7. A. V. Kolesnichenko, “Termodinamicheskii vyvod drobnogo uravneniya Fokkera–Planka dlya fraktalnogo turbulentnogo khaosa so stepennoi pamyatyu”, Preprinty IPM im. M. V. Keldysha, 2014, 072, 32 pp.  mathnet
    8. A. V. Kolesnichenko, “Termodinamicheskii vyvod novoi formy sootnoshenii Stefana–Maksvella i algebraicheskikh uravnenii dlya koeffitsientov perenosa, sootnesennykh s diffuzionno-teplovymi protsessami v mnogokomponentnoi sploshnoi srede”, Preprinty IPM im. M. V. Keldysha, 2014, 091, 47 pp.  mathnet
    9. Saikhanov M.B., “Kineticheskoe modelirovanie dissipativnykh struktur”, Nelineinyi mir, 11:1 (2013), 044–050 Kinetic modeling of dissipative structures  elib
    10. A. V. Kolesnichenko, M. Ya. Marov, “Rol gidrodinamicheskoi spiralnosti v evolyutsii protoplanetnogo turbulentnogo diska”, Matem. modelirovanie, 20:10 (2008), 99–125  mathnet  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:650
    Full-text PDF :262
    References:109
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025