|
Equilibriums and cycles of some nonautonomous difference equations
A. V. Lasunsky Novgorod State University, Russia, Velikii Novgorod
Abstract:
Sufficient conditions of existence of positive and asymptotically stable equilibrium for nonautonomous discrete exponential predator-prey model are obtained. If
$$
r\in\Biggl(0,\frac1a+\frac1{a\sqrt{1-4a\gamma}}\Biggr),\qquad r\ne\frac1{2a}+\frac1{2a\sqrt{1-4a\gamma}},
$$
then the equation of the nonautonomous “Consensus” model
$$
x_{n+1}=x_n\exp\Bigl(r_n\Bigl(-a+\frac1{x_n}-\frac\gamma{x^2_n}\Bigr)\Bigr),\qquad r_n>0,\quad a>0,\quad\gamma>0,\quad a\gamma<\frac14,
$$
has positive and asymptotically stable equilibrium.
Received: 25.06.2007
Citation:
A. V. Lasunsky, “Equilibriums and cycles of some nonautonomous difference equations”, Matem. Mod., 21:3 (2009), 120–126
Linking options:
https://www.mathnet.ru/eng/mm2752 https://www.mathnet.ru/eng/mm/v21/i3/p120
|
Statistics & downloads: |
Abstract page: | 332 | Full-text PDF : | 109 | References: | 52 | First page: | 61 |
|