Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 1989, Volume 1, Number 6, Pages 95–107 (Mi mm2585)  

This article is cited in 2 scientific papers (total in 2 papers)

Mathematical models of phenomena and processes

Existence of stationary solutions of Vlasov–Maxwell equations and some of their exact solutions

Yu. A. Markov, G. A. Rudykh, N. A. Sidorov, A. V. Sinitsyn
Full-text PDF (991 kB) Citations (2)
Received: 28.12.1988
Bibliographic databases:
UDC: 530.1
Language: Russian
Citation: Yu. A. Markov, G. A. Rudykh, N. A. Sidorov, A. V. Sinitsyn, “Existence of stationary solutions of Vlasov–Maxwell equations and some of their exact solutions”, Matem. Mod., 1:6 (1989), 95–107
Citation in format AMSBIB
\Bibitem{MarRudSid89}
\by Yu.~A.~Markov, G.~A.~Rudykh, N.~A.~Sidorov, A.~V.~Sinitsyn
\paper Existence of stationary solutions of Vlasov--Maxwell equations and some of their exact solutions
\jour Matem. Mod.
\yr 1989
\vol 1
\issue 6
\pages 95--107
\mathnet{http://mi.mathnet.ru/mm2585}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1021387}
\zmath{https://zbmath.org/?q=an:0969.35560}
Linking options:
  • https://www.mathnet.ru/eng/mm2585
  • https://www.mathnet.ru/eng/mm/v1/i6/p95
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:384
    Full-text PDF :207
    References:1
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024