Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2004, Volume 16, Number 7, Pages 68–76 (Mi mm256)  

This article is cited in 4 scientific papers (total in 4 papers)

Studying the correctness of boundary problems for Navier–Stokes equations in primitive variables

P. A. Anan'ev, P. K. Volkov, A. V. Pereverzev

SPC "Turbocon"
References:
Abstract: The Galerkin finite element method was implemented within the framework of the symbolic computation system. This provides studying the correctness of boundary problems for the incompressible viscous flow both numerically and analytically. An approach based on the coupled solution of the Navier–Stokes equations in primitive variables was used. In the problems with the given velocity on boundaries such technique leads to the singular system of linear equations and to impossibility to obtain the solution. The system matrix have zero as multiple eigenvalue. It has been shown that this effect is caused by the solenoidality condition for the velocity field. A regularization approach with a parameter having the physical meaning is also tested. In this case the spectrum contains only one zero, and nonlinear solutions corresponding to experimental data was easily obtained. The boundary problems with the given pressure drop are correct. The Galerkin finite element method for regularized equations is free from scheme viscosity, and the solutions do not depend on the parameters of grids. In commonly used finite-difference methods the different scheme viscosity virtually serves as an implicit regularization parameter, and that results in incommensurability of calculations results.
Received: 30.06.2003
Bibliographic databases:
Language: Russian
Citation: P. A. Anan'ev, P. K. Volkov, A. V. Pereverzev, “Studying the correctness of boundary problems for Navier–Stokes equations in primitive variables”, Matem. Mod., 16:7 (2004), 68–76
Citation in format AMSBIB
\Bibitem{AnaVolPer04}
\by P.~A.~Anan'ev, P.~K.~Volkov, A.~V.~Pereverzev
\paper Studying the correctness of boundary problems for Navier--Stokes equations in primitive variables
\jour Matem. Mod.
\yr 2004
\vol 16
\issue 7
\pages 68--76
\mathnet{http://mi.mathnet.ru/mm256}
\zmath{https://zbmath.org/?q=an:1131.76311}
Linking options:
  • https://www.mathnet.ru/eng/mm256
  • https://www.mathnet.ru/eng/mm/v16/i7/p68
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:713
    Full-text PDF :257
    References:73
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024