Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 1990, Volume 2, Number 9, Pages 105–113 (Mi mm2454)  

This article is cited in 1 scientific paper (total in 1 paper)

Mathematical models of phenomena and processes

On role of Riccati equation in the theory of transonic gas-dynamic flows

N. Yu. Kapustina, K. B. Sabitov

a M. V. Lomonosov Moscow State University
Full-text PDF (934 kB) Citations (1)
Abstract: The article is devoted to theTricomi problem, the generalized Tricomi problem and the Francl problem, which arise in the mathematical models of transonic flows. By using Riccati equation the uniqueness theorems of classical solutions were proved for these mathematical problems.
Received: 20.04.1990
Bibliographic databases:
UDC: 517.956.6
Language: Russian
Citation: N. Yu. Kapustin, K. B. Sabitov, “On role of Riccati equation in the theory of transonic gas-dynamic flows”, Matem. Mod., 2:9 (1990), 105–113
Citation in format AMSBIB
\Bibitem{KapSab90}
\by N.~Yu.~Kapustin, K.~B.~Sabitov
\paper On role of Riccati equation in the theory of transonic gas-dynamic flows
\jour Matem. Mod.
\yr 1990
\vol 2
\issue 9
\pages 105--113
\mathnet{http://mi.mathnet.ru/mm2454}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1123428}
\zmath{https://zbmath.org/?q=an:0972.76515}
Linking options:
  • https://www.mathnet.ru/eng/mm2454
  • https://www.mathnet.ru/eng/mm/v2/i9/p105
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:394
    Full-text PDF :185
    References:1
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024