Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 1990, Volume 2, Number 8, Pages 60–69 (Mi mm2426)  

This article is cited in 1 scientific paper (total in 1 paper)

Mathematical models of phenomena and processes

1-D Model of diffusion in polysilicon-silicon interface

A. D. Sadovnikova, A. V. Chernyaev

a Moscow Institute of Physics and Technology
Abstract: The model of impurity diffusion in poly silicon layer is considered. The model equations, which takes into account the grain growth, the segregation of impurity to the grain boundaries as well as impurity pile-up at the poly silicon-silicon interface, are derived. The comparison of some simulated results with experimental ones is considered.
Received: 02.04.1990
Bibliographic databases:
UDC: 621.315.592.002
Language: Russian
Citation: A. D. Sadovnikov, A. V. Chernyaev, “1-D Model of diffusion in polysilicon-silicon interface”, Matem. Mod., 2:8 (1990), 60–69
Citation in format AMSBIB
\Bibitem{SadChe90}
\by A.~D.~Sadovnikov, A.~V.~Chernyaev
\paper 1-D Model of diffusion in polysilicon-silicon interface
\jour Matem. Mod.
\yr 1990
\vol 2
\issue 8
\pages 60--69
\mathnet{http://mi.mathnet.ru/mm2426}
\zmath{https://zbmath.org/?q=an:0974.82518}
Linking options:
  • https://www.mathnet.ru/eng/mm2426
  • https://www.mathnet.ru/eng/mm/v2/i8/p60
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024