Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 1990, Volume 2, Number 4, Pages 78–87 (Mi mm2356)  

This article is cited in 9 scientific papers (total in 9 papers)

Computational methods and algorithms

Hamiltonian methods of Runge–Kutta type and their variational interpretation

Yu. B. Suris

Leningrad Polytechnical Institute
Full-text PDF (986 kB) Citations (9)
Abstract: Numerical Methods of canonical type for solution of Hamilton systems are constructed. Discrete analogue of principle of least action is proved.
Received: 05.07.1989
Bibliographic databases:
UDC: 519.62
Language: Russian
Citation: Yu. B. Suris, “Hamiltonian methods of Runge–Kutta type and their variational interpretation”, Matem. Mod., 2:4 (1990), 78–87
Citation in format AMSBIB
\Bibitem{Sur90}
\by Yu.~B.~Suris
\paper Hamiltonian methods of Runge--Kutta type and their variational interpretation
\jour Matem. Mod.
\yr 1990
\vol 2
\issue 4
\pages 78--87
\mathnet{http://mi.mathnet.ru/mm2356}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1064467}
\zmath{https://zbmath.org/?q=an:0972.70500}
Linking options:
  • https://www.mathnet.ru/eng/mm2356
  • https://www.mathnet.ru/eng/mm/v2/i4/p78
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:738
    Full-text PDF :441
    References:1
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024