Loading [MathJax]/jax/output/SVG/config.js
Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Model.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 1991, Volume 3, Number 9, Pages 114–127 (Mi mm2276)  

This article is cited in 7 scientific papers (total in 7 papers)

Computational methods and algorithms

Solving of partial differential equations by schemes with complex coefficients

E. Yu. Dnestrovskaya, N. N. Kalitkin, I. V. Ritus

National Center of Mathematical Modelling of USSR Academy of Sciences
Abstract: Complicated problems of high temperature gas dynamic flows with chemical reactions are described with a system of differential equations, as ordinary (ODE), so in partial derivatives. Traditional method of solving such problems is splitting on physical processes. Here is developed another way. All partial differential equations are transformed with the line method to a large stiff ODE system. This system is solved by explicit-implicit Rosenbrock scheme with complex coefficients, having some unique properties. The applications of this method are given for different types of problems, so as heat conduction, chemical reactions with heat conduction and diffusion, transfer equation, acoustics, gas dynamics, and gas dynamics with chemical reactions, diffusion and heat conduction.
Received: 06.06.1991
Bibliographic databases:
Language: Russian
Citation: E. Yu. Dnestrovskaya, N. N. Kalitkin, I. V. Ritus, “Solving of partial differential equations by schemes with complex coefficients”, Mat. Model., 3:9 (1991), 114–127
Citation in format AMSBIB
\Bibitem{DneKalRit91}
\by E.~Yu.~Dnestrovskaya, N.~N.~Kalitkin, I.~V.~Ritus
\paper Solving of partial differential equations by schemes with complex coefficients
\jour Mat. Model.
\yr 1991
\vol 3
\issue 9
\pages 114--127
\mathnet{http://mi.mathnet.ru/mm2276}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1157076}
\zmath{https://zbmath.org/?q=an:1189.65248}
Linking options:
  • https://www.mathnet.ru/eng/mm2276
  • https://www.mathnet.ru/eng/mm/v3/i9/p114
  • This publication is cited in the following 7 articles:
    1. V. A. Gordin, “When an implicit scheme is monotonic”, Math. Models Comput. Simul., 15:6 (2023), 1114–1122  mathnet  crossref  crossref
    2. M. N. Nazarov, “Ob alternative uravneniyam v chastnykh proizvodnykh pri modelirovanii sistem tipa reaktsiya–diffuziya”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2013, no. 2, 35–47  mathnet
    3. Yu. A. Sigunov, I. R. Didenko, “Kompleksnaya realizatsiya neyavnykh odnostadiinykh metodov do 4-go poryadka tochnosti pri chislennom integrirovanii sistem ODU”, Matem. modelirovanie, 23:1 (2011), 87–99  mathnet  mathscinet
    4. A. M. Zubanov, N. I. Kokonkov, P. D. Shirkov, “One-stage Rosenbrock method with complex coefficients and automatic time step evaluation”, Math. Models Comput. Simul., 3:5 (2011), 596–603  mathnet  crossref  mathscinet
    5. B. V. Rogov, M. N. Mikhailovskaya, “Some aspects of compact difference scheme convergence”, Math. Models Comput. Simul., 1:1 (2009), 91–104  mathnet  crossref  mathscinet  zmath
    6. A. B. Alshin, E. A. Alshina, N. N. Kalitkin, A. B. Koryagina, “Rosenbrock schemes with complex coefficients for stiff and differential algebraic systems”, Comput. Math. Math. Phys., 46:8 (2006), 1320–1340  mathnet  crossref  mathscinet
    7. E. A. Alshina, N. N. Kalitkin, P. V. Koryakin, “Diagnostics of singularities of exact solutions in computations with error control”, Comput. Math. Math. Phys., 45:10 (2005), 1769–1779  mathnet  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:715
    Full-text PDF :427
    References:1
    First page:4
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025