Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 1991, Volume 3, Number 6, Pages 22–28 (Mi mm2236)  

This article is cited in 2 scientific papers (total in 2 papers)

Computational methods and algorithms

Stability of bifurcational periodic solution in reaction-diffusion type systems

A. V. Shobukhov
Full-text PDF (714 kB) Citations (2)
Abstract: Stability of periodical solution, appearing as a result of Andronov–Hopf bifurcation in the boundary problem for the reaction-diffusion type system with bilinear right hand, that describes the reaction of CO oxidation on catalyst surface, is considered in the article.
Received: 02.07.1991
Bibliographic databases:
UDC: 519.9
Language: Russian
Citation: A. V. Shobukhov, “Stability of bifurcational periodic solution in reaction-diffusion type systems”, Matem. Mod., 3:6 (1991), 22–28
Citation in format AMSBIB
\Bibitem{Sho91}
\by A.~V.~Shobukhov
\paper Stability of bifurcational periodic solution in reaction-diffusion type systems
\jour Matem. Mod.
\yr 1991
\vol 3
\issue 6
\pages 22--28
\mathnet{http://mi.mathnet.ru/mm2236}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1149026}
\zmath{https://zbmath.org/?q=an:1189.35155}
Linking options:
  • https://www.mathnet.ru/eng/mm2236
  • https://www.mathnet.ru/eng/mm/v3/i6/p22
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025