Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 1991, Volume 3, Number 3, Pages 130–136 (Mi mm2210)  

Computational methods and algorithms

On the practical convergence of subgradient methods of the manufacturing systems synhtesis

I. N. Dochkin, A. G. Perevozchikova

a M. V. Lomonosov Moscow State University
Abstract: We survey a manufacturing systems optimization problems by cost function minimum. The subgradients methods is constructed. The testing results for algorithms are described.
Received: 29.04.1991
Bibliographic databases:
UDC: 519.71
Language: Russian
Citation: I. N. Dochkin, A. G. Perevozchikov, “On the practical convergence of subgradient methods of the manufacturing systems synhtesis”, Matem. Mod., 3:3 (1991), 130–136
Citation in format AMSBIB
\Bibitem{DocPer91}
\by I.~N.~Dochkin, A.~G.~Perevozchikov
\paper On the practical convergence of subgradient methods of the manufacturing systems synhtesis
\jour Matem. Mod.
\yr 1991
\vol 3
\issue 3
\pages 130--136
\mathnet{http://mi.mathnet.ru/mm2210}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1152251}
\zmath{https://zbmath.org/?q=an:1189.90223}
Linking options:
  • https://www.mathnet.ru/eng/mm2210
  • https://www.mathnet.ru/eng/mm/v3/i3/p130
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:223
    Full-text PDF :103
    References:1
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024