Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 1991, Volume 3, Number 3, Pages 16–26 (Mi mm2198)  

Computer experiment in science and engineering

On the selection of a model class for describing non-homogeneous biosystem

A. V. Tuzinkevich

Institute for Automation and Control Processes, Far Eastern Branch of the Academy of Sciences of the USSR
Abstract: The paper deals with the relationship between box, diffusion and integral model. We have shown that an integral model reduces to a diffusion one if a community to be modelled is weakly non-homogeneous (i.e. the size of space non-homogeneity is much large than the sizes of individuals and the radius of their activity). The paper gives examples of integral description of various processes in biological communities and studies of integral models.
Received: 02.06.1990
Bibliographic databases:
UDC: 517.6:577.48
Language: Russian
Citation: A. V. Tuzinkevich, “On the selection of a model class for describing non-homogeneous biosystem”, Matem. Mod., 3:3 (1991), 16–26
Citation in format AMSBIB
\Bibitem{Tuz91}
\by A.~V.~Tuzinkevich
\paper On the selection of a~model class for describing non-homogeneous biosystem
\jour Matem. Mod.
\yr 1991
\vol 3
\issue 3
\pages 16--26
\mathnet{http://mi.mathnet.ru/mm2198}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1152245}
\zmath{https://zbmath.org/?q=an:1189.92002}
Linking options:
  • https://www.mathnet.ru/eng/mm2198
  • https://www.mathnet.ru/eng/mm/v3/i3/p16
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:287
    Full-text PDF :131
    References:1
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024