Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 1992, Volume 4, Number 9, Pages 69–81 (Mi mm2112)  

Mathematical models and computer experiment

Modeling of the many-component schroedinger solitons dynamics

V. A. Vyslouh, E. A. Kolomiytseva, I. V. Cherednik

M. V. Lomonosov Moscow State University
Abstract: The methodics of the numerical analysis of coupled nonlinear Schroedinger equations are described. The method of soliton parameters computation based on inverse scattering problem is developed. The manycomponent Schroedinger solitons dynamics is investigated by means of mathematical modeling. It is shown that the soliton parameters can be controlled by its mixing with the broad non-soliton pulse in the orthogonal mode. In the frames of adiabatic approximation of the perturbance theory, the femtosecond two-component solitons dynamics is considered.
Received: 10.12.1990
UDC: 535.3
Language: Russian
Citation: V. A. Vyslouh, E. A. Kolomiytseva, I. V. Cherednik, “Modeling of the many-component schroedinger solitons dynamics”, Matem. Mod., 4:9 (1992), 69–81
Citation in format AMSBIB
\Bibitem{VysKolChe92}
\by V.~A.~Vyslouh, E.~A.~Kolomiytseva, I.~V.~Cherednik
\paper Modeling of the many-component schroedinger solitons dynamics
\jour Matem. Mod.
\yr 1992
\vol 4
\issue 9
\pages 69--81
\mathnet{http://mi.mathnet.ru/mm2112}
Linking options:
  • https://www.mathnet.ru/eng/mm2112
  • https://www.mathnet.ru/eng/mm/v4/i9/p69
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:290
    Full-text PDF :122
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024