Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 1993, Volume 5, Number 12, Pages 3–12 (Mi mm2026)  

Mathematical models and computer experiment

Mathematical modeling of resonanse process of electron-wave interaction

A. M. Khapaev, B. A. Volodin

M. V. Lomonosov Moscow State University, Faculty of Physics
Abstract: The mathematical modeling ofthe process interaction relativistic charges with electromagnetic fields with variable parameters is concluded in collateral solution ofequations for energy charge, function of field, reflactive index. Configurations of the field, what was investigated formerly, are exemplified for definition boundary suggested method.
Received: 15.01.1993
Bibliographic databases:
Language: Russian
Citation: A. M. Khapaev, B. A. Volodin, “Mathematical modeling of resonanse process of electron-wave interaction”, Matem. Mod., 5:12 (1993), 3–12
Citation in format AMSBIB
\Bibitem{KhaVol93}
\by A.~M.~Khapaev, B.~A.~Volodin
\paper Mathematical modeling of resonanse process of electron-wave interaction
\jour Matem. Mod.
\yr 1993
\vol 5
\issue 12
\pages 3--12
\mathnet{http://mi.mathnet.ru/mm2026}
\zmath{https://zbmath.org/?q=an:0974.78516}
Linking options:
  • https://www.mathnet.ru/eng/mm2026
  • https://www.mathnet.ru/eng/mm/v5/i12/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:242
    Full-text PDF :93
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024