Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 1993, Volume 5, Number 9, Pages 3–17 (Mi mm2003)  

This article is cited in 5 scientific papers (total in 5 papers)

Mathematical models and computer experiment

Nonparametric methods for analysis of consumer demand structure

A. A. Shananin

Dorodnitsyn Computing Centre of the Russian Academy of Sciences
Abstract: In this article nonparametric method for analysing of market statistics is proposed. This method may be used for forecasting the consumer demand structure if integrability conditions are satisfied.
Received: 21.10.1993
Bibliographic databases:
UDC: 519.86
Language: Russian
Citation: A. A. Shananin, “Nonparametric methods for analysis of consumer demand structure”, Matem. Mod., 5:9 (1993), 3–17
Citation in format AMSBIB
\Bibitem{Sha93}
\by A.~A.~Shananin
\paper Nonparametric methods for analysis of consumer demand structure
\jour Matem. Mod.
\yr 1993
\vol 5
\issue 9
\pages 3--17
\mathnet{http://mi.mathnet.ru/mm2003}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1260122}
\zmath{https://zbmath.org/?q=an:0974.91510}
Linking options:
  • https://www.mathnet.ru/eng/mm2003
  • https://www.mathnet.ru/eng/mm/v5/i9/p3
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:604
    Full-text PDF :274
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024