Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 1994, Volume 6, Number 8, Pages 33–44 (Mi mm1895)  

Mathematical models and computer experiment

Formation conditions of the spatially periodical quasi-stationary distribution of density of opened ion channels in the membrane

S. M. Korogod, L. P. Savchenko

Dnepropetrovsk State University
Abstract: A mathematical model of formation of the spatially periodical quasi-stationary distribution of transmembrane potential in cylinder-shaped cells is presented.
Received: 31.10.1991
Revised: 20.01.1994
Bibliographic databases:
Language: Russian
Citation: S. M. Korogod, L. P. Savchenko, “Formation conditions of the spatially periodical quasi-stationary distribution of density of opened ion channels in the membrane”, Matem. Mod., 6:8 (1994), 33–44
Citation in format AMSBIB
\Bibitem{KorSav94}
\by S.~M.~Korogod, L.~P.~Savchenko
\paper Formation conditions of the spatially periodical quasi-stationary distribution of density of opened ion channels in the membrane
\jour Matem. Mod.
\yr 1994
\vol 6
\issue 8
\pages 33--44
\mathnet{http://mi.mathnet.ru/mm1895}
\zmath{https://zbmath.org/?q=an:1075.92513}
Linking options:
  • https://www.mathnet.ru/eng/mm1895
  • https://www.mathnet.ru/eng/mm/v6/i8/p33
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:290
    Full-text PDF :122
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024