Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 1994, Volume 6, Number 5, Pages 105–121 (Mi mm1870)  

Computational methods and algorithms

Grid approximation of singularly perturbed equations, degenerated on the boundary. The case of sharply changing coefficients in the neighbourhood of the boundary layer

G. I. Shishkin

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
Abstract: On rectangular domain $G$, $G=(0,d_1]\times(0,d_2]$, tne Dirichlet problem for singularly perturbed equation of parabolic type $\{\varepsilon\partial_1^2-b(x_1)\partial/\partial x_2\}u(x)=f(x)$, where $b(x_1)=\min[(\sigma^{-1}x_1)^\alpha,1]$ is considered. The partial differential equation is degenerated into the second order ordinary differential equation when $x_1=0$; $x_2$ a time variable, the parameters $\varepsilon$, $\sigma$ can get any value on intervals $(0,1]$ and $[0,d_1/2]$ respectively, $\alpha\in(0,M]$, $M>1$. When $\varepsilon=0$ reduced first order equation is degenerated on the boundary domain for $x_1=0$. The difference scheme (on the grids condensing in the boundary and interior layers) is constructed which converges uniformly with respect to the parameters $\varepsilon$ and $\sigma$. Also grid approximations of the boundary value problems for elliptic equation $\{\varepsilon\Delta-b(x_1)\partial/\partial x_2\}u(x)=f(x)$ are considered. The problems of investigated type appear, for example, when the diffusion processes in moving medium are modelled.
Received: 11.11.1992
Bibliographic databases:
UDC: 519.633
Language: Russian
Citation: G. I. Shishkin, “Grid approximation of singularly perturbed equations, degenerated on the boundary. The case of sharply changing coefficients in the neighbourhood of the boundary layer”, Matem. Mod., 6:5 (1994), 105–121
Citation in format AMSBIB
\Bibitem{Shi94}
\by G.~I.~Shishkin
\paper Grid approximation of singularly perturbed equations, degenerated on the boundary. The case of sharply changing coefficients in the neighbourhood of the boundary layer
\jour Matem. Mod.
\yr 1994
\vol 6
\issue 5
\pages 105--121
\mathnet{http://mi.mathnet.ru/mm1870}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1306006}
\zmath{https://zbmath.org/?q=an:0978.65508}
Linking options:
  • https://www.mathnet.ru/eng/mm1870
  • https://www.mathnet.ru/eng/mm/v6/i5/p105
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025