Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 1994, Volume 6, Number 4, Pages 65–76 (Mi mm1859)  

Computational methods and algorithms

A kinetics equation for a singular beam of particles in an external forces field

M. B. Gavrikov

M. V. Keldysh Institute for Applied Mathematics, Russian Academy of Sciences
Abstract: A geometrical formalism is presented for dynamics of ensembles of particles, which are localized on a manifold surface of a classical phase space and are named “singular beams” in this paper. An equation of the singular beam dynamics is obtained in the simplest case of an external forces field, as well as an integral conservation law for the beam particles in an arbitrary volume of a phase space is derived. A coordinate representation of the obtained equation is considered, and a number of examples is discussed in the text.
Received: 14.04.1992
Bibliographic databases:
Language: Russian
Citation: M. B. Gavrikov, “A kinetics equation for a singular beam of particles in an external forces field”, Matem. Mod., 6:4 (1994), 65–76
Citation in format AMSBIB
\Bibitem{Gav94}
\by M.~B.~Gavrikov
\paper A~kinetics equation for a~singular beam of particles in an external forces field
\jour Matem. Mod.
\yr 1994
\vol 6
\issue 4
\pages 65--76
\mathnet{http://mi.mathnet.ru/mm1859}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1308424}
\zmath{https://zbmath.org/?q=an:1075.76694}
Linking options:
  • https://www.mathnet.ru/eng/mm1859
  • https://www.mathnet.ru/eng/mm/v6/i4/p65
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:220
    Full-text PDF :79
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024