Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2005, Volume 17, Number 4, Pages 53–61 (Mi mm179)  

This article is cited in 2 scientific papers (total in 2 papers)

The diffraction of TE wave on a 2D perfectly conducting grating

D. L. Golovashkinab

a S. P. Korolyov Samara State Aerospace University
b Image Processing Systems Institute
Full-text PDF (631 kB) Citations (2)
Abstract: The work is devoted to the application of the finite-difference scheme to the solution of the Maxwell equations for modeling the diffraction of the electromagnetic TE wave on a 2D perfectly conducting grating. Comparison with the familiar mode method of modeling is made.
Received: 07.06.2004
Bibliographic databases:
Language: Russian
Citation: D. L. Golovashkin, “The diffraction of TE wave on a 2D perfectly conducting grating”, Matem. Mod., 17:4 (2005), 53–61
Citation in format AMSBIB
\Bibitem{Gol05}
\by D.~L.~Golovashkin
\paper The diffraction of TE wave on a 2D~perfectly conducting grating
\jour Matem. Mod.
\yr 2005
\vol 17
\issue 4
\pages 53--61
\mathnet{http://mi.mathnet.ru/mm179}
\zmath{https://zbmath.org/?q=an:1080.78501}
Linking options:
  • https://www.mathnet.ru/eng/mm179
  • https://www.mathnet.ru/eng/mm/v17/i4/p53
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:563
    Full-text PDF :161
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024