Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 1995, Volume 7, Number 4, Pages 99–127 (Mi mm1689)  

This article is cited in 9 scientific papers (total in 9 papers)

Computational methods and algorithms

Burgers equation is a test for numerical methods

D. S. Guzhev, N. N. Kalitkin

Institute for Mathematical Modelling, Russian Academy of Sciences
Abstract: Burgers equation $u_t+uu_x=0$ reproduces some important aspects of hydrodynamic phenomena: evolution of it's solutions may lead to “strong” and “weak” breaks resembling shock waves and rarefaction waves. These types of solution were used as tests for numerical methods. Many numerical methods were compared and their influence on qualitative behaviour of numerical solution was investigated. One scheme was recommended for problems of such type.
Received: 12.01.1995
Bibliographic databases:
Language: Russian
Citation: D. S. Guzhev, N. N. Kalitkin, “Burgers equation is a test for numerical methods”, Matem. Mod., 7:4 (1995), 99–127
Citation in format AMSBIB
\Bibitem{GuzKal95}
\by D.~S.~Guzhev, N.~N.~Kalitkin
\paper Burgers equation is a~test for numerical methods
\jour Matem. Mod.
\yr 1995
\vol 7
\issue 4
\pages 99--127
\mathnet{http://mi.mathnet.ru/mm1689}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1489963}
\zmath{https://zbmath.org/?q=an:1002.76548}
Linking options:
  • https://www.mathnet.ru/eng/mm1689
  • https://www.mathnet.ru/eng/mm/v7/i4/p99
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:2382
    Full-text PDF :2183
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024