Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 1996, Volume 8, Number 5, Pages 63–75 (Mi mm1567)  

Mathematical models and computer experiment

Numerical simulation of 3D nonequilibrium flows at viscous shock layer

S. V. Peigin, V. Yu. Kazakov

Scientific Research Institute of Applied Mathematics and Mechanics by Tomsk State University
Abstract: The simulation of multicomponent nonequilibrium dissociated air flow over catalytic surface of blunt bodies, moving along aerodynamic reentry trajectory is considered. The hypersonic viscous shock layer theory including nonequilibrium.chemical reactions and multicomponent diffusion is used as initial mathematical model. The characteristic property of suggested numerical procedure is that it doesn't need preliminary solution of the Stefan–Maxwell equations with respect to diffusion fluxes and doesn't imply symmetric planes existence in the flow. The influence of attack and slipping angles, heterogeneous recombination rate is investigated. It is obtained, that for non zerr incidence and slipping a limited region arises on the lateral surface of the body, where the heat flux exceeds its values at the stagnation point. The accuracy of the binary similarity approximation was estimated.
Received: 02.02.1995
Bibliographic databases:
UDC: 519.86
Language: Russian
Citation: S. V. Peigin, V. Yu. Kazakov, “Numerical simulation of 3D nonequilibrium flows at viscous shock layer”, Matem. Mod., 8:5 (1996), 63–75
Citation in format AMSBIB
\Bibitem{PeiKaz96}
\by S.~V.~Peigin, V.~Yu.~Kazakov
\paper Numerical simulation of 3D~nonequilibrium flows at viscous shock layer
\jour Matem. Mod.
\yr 1996
\vol 8
\issue 5
\pages 63--75
\mathnet{http://mi.mathnet.ru/mm1567}
\zmath{https://zbmath.org/?q=an:0993.76538}
Linking options:
  • https://www.mathnet.ru/eng/mm1567
  • https://www.mathnet.ru/eng/mm/v8/i5/p63
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:238
    Full-text PDF :109
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024