Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 1996, Volume 8, Number 4, Pages 57–66 (Mi mm1557)  

Mathematical models and computer experiment

Cyclic selfreorganization of the optical structures formed by the nonlinear interferometer with two-dimensional feedback

A. I. Arshinov, A. N. Lysenko, R. R. Mudarisov, B. N. Poizner

Tomsk State University
Abstract: The possibility of the new type of spatial-temporal selforganization, formed by optical system, containing Kerr non-linear media (having diffusion and relaxation) and provided with two-dimensional feedback [1], is predicted as the result of mathematical modeling. The authors suggest to name the selforganization under which the sequence of different dynamic spatial-temporal patterns is steadily reproduced as “selfreorganization” and to name the regime under which the sequence of the patterns repeats periodically as “cyclical selfreorganization”. The dependence of the latter on the system parameters is predicted and the conditions are described.
Received: 26.09.1994
Bibliographic databases:
UDC: 536.42+536.75+530.18+517.9
Language: Russian
Citation: A. I. Arshinov, A. N. Lysenko, R. R. Mudarisov, B. N. Poizner, “Cyclic selfreorganization of the optical structures formed by the nonlinear interferometer with two-dimensional feedback”, Matem. Mod., 8:4 (1996), 57–66
Citation in format AMSBIB
\Bibitem{ArsLysMud96}
\by A.~I.~Arshinov, A.~N.~Lysenko, R.~R.~Mudarisov, B.~N.~Poizner
\paper Cyclic selfreorganization of the optical structures formed by the nonlinear interferometer with two-dimensional feedback
\jour Matem. Mod.
\yr 1996
\vol 8
\issue 4
\pages 57--66
\mathnet{http://mi.mathnet.ru/mm1557}
\zmath{https://zbmath.org/?q=an:0996.78503}
Linking options:
  • https://www.mathnet.ru/eng/mm1557
  • https://www.mathnet.ru/eng/mm/v8/i4/p57
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:244
    Full-text PDF :95
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024