Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 1996, Volume 8, Number 4, Pages 21–46 (Mi mm1555)  

This article is cited in 1 scientific paper (total in 1 paper)

Mathematical models and computer experiment

Mathematical model of economic growth through restoration of savings

S. M. Guriev

Dorodnitsyn Computing Centre of the Russian Academy of Sciences
Abstract: The paper considers a mathematical model of consequences of restoration of savings in Russia according to Bernstam [1]. It is shown that if potential productivity in the economy is high enough and financial intermediaries are efficient, the restoration of savings can result in economic growth, lower inflation and support formation of a normal financial system in Russia.
Received: 05.04.1995
Bibliographic databases:
UDC: 519.86
Language: Russian
Citation: S. M. Guriev, “Mathematical model of economic growth through restoration of savings”, Matem. Mod., 8:4 (1996), 21–46
Citation in format AMSBIB
\Bibitem{Gur96}
\by S.~M.~Guriev
\paper Mathematical model of economic growth through restoration of savings
\jour Matem. Mod.
\yr 1996
\vol 8
\issue 4
\pages 21--46
\mathnet{http://mi.mathnet.ru/mm1555}
\zmath{https://zbmath.org/?q=an:0982.91503}
Linking options:
  • https://www.mathnet.ru/eng/mm1555
  • https://www.mathnet.ru/eng/mm/v8/i4/p21
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025