Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 1996, Volume 8, Number 3, Pages 111–127 (Mi mm1553)  

Computational methods and algorithms

Parallel methods of solving singularly perturbed boundary value problems for elliptic equations

G. I. Shishkin, I. V. Tselischeva

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
Abstract: A Dirichlet problem is considered on a rectangle for singularly perturbed linear and quasilinear elliptic equations. When the perturbation parameter equals zero, elliptic equations degenerate into zero-order ones. Special iterative and iteration-free finite difference schemes (in particularly, the schemes using parallel computations) are constructed which converge uniformly with respect to the parameter. Schwarz' method is used to construct the schemes. Necessary and sufficient conditions are given for the solutions of the iterative difference schemes to converge uniformly with respect to the perturbing parameter as the number of iterations increases. It is shown that the use of schemes with parallel computations on multiprocessor computers provides the acceleration of computations.
Received: 26.04.1994
Bibliographic databases:
UDC: 533.539
Language: Russian
Citation: G. I. Shishkin, I. V. Tselischeva, “Parallel methods of solving singularly perturbed boundary value problems for elliptic equations”, Matem. Mod., 8:3 (1996), 111–127
Citation in format AMSBIB
\Bibitem{ShiTse96}
\by G.~I.~Shishkin, I.~V.~Tselischeva
\paper Parallel methods of solving singularly perturbed boundary value problems for elliptic equations
\jour Matem. Mod.
\yr 1996
\vol 8
\issue 3
\pages 111--127
\mathnet{http://mi.mathnet.ru/mm1553}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1399457}
\zmath{https://zbmath.org/?q=an:0981.65508}
Linking options:
  • https://www.mathnet.ru/eng/mm1553
  • https://www.mathnet.ru/eng/mm/v8/i3/p111
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:367
    Full-text PDF :128
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024