Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 1997, Volume 9, Number 4, Pages 39–52 (Mi mm1402)  

This article is cited in 1 scientific paper (total in 1 paper)

Mathematical models and computer experiment

Quantum Monte-Carlo simulation of the phase transition in a two – dimensional quantum Josephson system

A. I. Belousov, Yu. E. Lozovik

Institute of Spectroscopy, Russian Academy of Sciences
Abstract: Path Integral Quantum Monte Carlo simulation is used to study properties of 2D quanturn Josephson array and other systems, described by $2+1$ XY model. Optimal methods of simulations are considered. The phase diagram of the system in the plane temperature $T$ – dimensionless quantum parameter $q$ ($q=\hbar/\sqrt{JC}$), $J$ is the Josephson coupling constant, $C$ is the intragrain capacitance) is studied in detail. The variational method of the vorticity modulus calculating, which is specific to the topological phase transition, is developed. Analysis of the correlation function of phases, vorticity and helicity moduli leads to the conclusion that the whole line of phase transition is of Kosterlitz–Thouless type.
Received: 07.05.1996
Bibliographic databases:
Language: Russian
Citation: A. I. Belousov, Yu. E. Lozovik, “Quantum Monte-Carlo simulation of the phase transition in a two – dimensional quantum Josephson system”, Matem. Mod., 9:4 (1997), 39–52
Citation in format AMSBIB
\Bibitem{BelLoz97}
\by A.~I.~Belousov, Yu.~E.~Lozovik
\paper Quantum Monte-Carlo simulation of the phase transition in a~two~-- dimensional quantum Josephson system
\jour Matem. Mod.
\yr 1997
\vol 9
\issue 4
\pages 39--52
\mathnet{http://mi.mathnet.ru/mm1402}
\zmath{https://zbmath.org/?q=an:1071.82500}
Linking options:
  • https://www.mathnet.ru/eng/mm1402
  • https://www.mathnet.ru/eng/mm/v9/i4/p39
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:819
    Full-text PDF :326
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024