Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 1998, Volume 10, Number 9, Pages 35–40 (Mi mm1321)  

Mathematical models and computer experiment

Macroparameters of an effective distribution and of a sourse function in the mathematical model of shadowed sputtering

E. P. Zhidkov, L. A. Sevastianov

Peoples Friendship University of Russia
Abstract: The investigation is presented of an existence of the unique shadowing shields for a set of close by their characteristics and sputtering conditions effective distribution of sputtered particles and source function, so as their stability for small variations of shadowed sputtering parameters.
Received: 02.04.1998
Language: Russian
Citation: E. P. Zhidkov, L. A. Sevastianov, “Macroparameters of an effective distribution and of a sourse function in the mathematical model of shadowed sputtering”, Matem. Mod., 10:9 (1998), 35–40
Citation in format AMSBIB
\Bibitem{ZhiSev98}
\by E.~P.~Zhidkov, L.~A.~Sevastianov
\paper Macroparameters of an effective distribution and of a~sourse function in the mathematical model of shadowed sputtering
\jour Matem. Mod.
\yr 1998
\vol 10
\issue 9
\pages 35--40
\mathnet{http://mi.mathnet.ru/mm1321}
Linking options:
  • https://www.mathnet.ru/eng/mm1321
  • https://www.mathnet.ru/eng/mm/v10/i9/p35
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:388
    Full-text PDF :152
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024