Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 1998, Volume 10, Number 6, Pages 118–122 (Mi mm1297)  

This article is cited in 1 scientific paper (total in 2 paper)

Computational methods and algorithms

The existence of Jacoby integral for differential equations in a finite circular Newton problem of many bodies

E. A. Grebenikov

Institute for High-Performance Computer Systems, Russian Academy of Sciences
Full-text PDF (398 kB) Citations (2)
Abstract: Existence of Jacoby integral is proved in a finite circular problem of $n+1$ bodies ($n\geq3$). In this dynamic model $n$ bodies $P_0,P_1,\dots,P_{n-1}$ with masses $m_0,m_1,\dots,m_{n-1}$ and point $P$ (with mass $m=0$) mutually pull one another under the law of Newton and $n$ massive bodies move on circular orbits around the common centre of mass $G$, whereas $(n+1)$s body $P$ move in three-dimensional space under action gravitation forces.
Received: 22.09.1997
Language: Russian
Citation: E. A. Grebenikov, “The existence of Jacoby integral for differential equations in a finite circular Newton problem of many bodies”, Matem. Mod., 10:6 (1998), 118–122
Citation in format AMSBIB
\Bibitem{Gre98}
\by E.~A.~Grebenikov
\paper The existence of Jacoby integral for differential equations in a~finite circular Newton problem of many bodies
\jour Matem. Mod.
\yr 1998
\vol 10
\issue 6
\pages 118--122
\mathnet{http://mi.mathnet.ru/mm1297}
Linking options:
  • https://www.mathnet.ru/eng/mm1297
  • https://www.mathnet.ru/eng/mm/v10/i6/p118
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:358
    Full-text PDF :148
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024