Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 1998, Volume 10, Number 1, Pages 44–50 (Mi mm1237)  

This article is cited in 3 scientific papers (total in 3 papers)

Computational methods and algorithms

Stability boundaries for 2-dimensional difference schemes

A. V. Gulin, L. F. Yukhno

Institute for Mathematical Modelling, Russian Academy of Sciences
Full-text PDF (532 kB) Citations (3)
Abstract: The problems related to stability boundaries of difference schemes for 2-dimensional parabolic equation are formulated, and results of numerical obtaining stability boundaries for various difference schemes consistent with heat conduction equation are described.
Received: 16.05.1997
Bibliographic databases:
Language: Russian
Citation: A. V. Gulin, L. F. Yukhno, “Stability boundaries for 2-dimensional difference schemes”, Matem. Mod., 10:1 (1998), 44–50
Citation in format AMSBIB
\Bibitem{GulYuk98}
\by A.~V.~Gulin, L.~F.~Yukhno
\paper Stability boundaries for 2-dimensional difference schemes
\jour Matem. Mod.
\yr 1998
\vol 10
\issue 1
\pages 44--50
\mathnet{http://mi.mathnet.ru/mm1237}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1758778}
\zmath{https://zbmath.org/?q=an:1189.65206}
Linking options:
  • https://www.mathnet.ru/eng/mm1237
  • https://www.mathnet.ru/eng/mm/v10/i1/p44
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024