Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2007, Volume 19, Number 12, Pages 43–51 (Mi mm1225)  

This article is cited in 4 scientific papers (total in 4 papers)

Construction of approximate neural network models according to heterogeneous data

A. N. Vasilyev, D. A. Tarkhov

Saint-Petersburg State Polytechnical University
Full-text PDF (181 kB) Citations (4)
References:
Abstract: Neural network approach to the robust mathematical model construction according to heterogeneous pieces of information (equations, conditions, experimental data, etc.) is considered. The case of ordinary differential equations and the case of partial differential equations and possible generalizations as well are key problems in the paper. Some model examples are given.
Received: 18.12.2006
Bibliographic databases:
Language: Russian
Citation: A. N. Vasilyev, D. A. Tarkhov, “Construction of approximate neural network models according to heterogeneous data”, Matem. Mod., 19:12 (2007), 43–51
Citation in format AMSBIB
\Bibitem{VasTar07}
\by A.~N.~Vasilyev, D.~A.~Tarkhov
\paper Construction of approximate neural network models according to heterogeneous data
\jour Matem. Mod.
\yr 2007
\vol 19
\issue 12
\pages 43--51
\mathnet{http://mi.mathnet.ru/mm1225}
\zmath{https://zbmath.org/?q=an:1140.68450}
Linking options:
  • https://www.mathnet.ru/eng/mm1225
  • https://www.mathnet.ru/eng/mm/v19/i12/p43
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:839
    Full-text PDF :484
    References:77
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024