Matematicheskaya Teoriya Igr i Ee Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Teor. Igr Pril.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskaya Teoriya Igr i Ee Prilozheniya, 2012, Volume 4, Issue 3, Pages 51–57 (Mi mgta88)  

On a discrete arbitration procedure with quadratic payoff function

Alexander E. Mentcher

Faculty of Physics and Mathematics, Zabaikalsky State Humanitarian Pedagogical University named after N. Tchernishevsky, Chita
References:
Abstract: We consider a two-person bargaining model with arbitrator's participation. The players make their offers and the arbitrator's decision is simulated by a random variable with uniform distribution on the set $\{-n,-(n-1),\dots,-1,0,1,\dots,n-1,n\}$. We use a new arbitration procedure. The Nash equilibrium in this game in mixed strategies is found.
Keywords: non-cooperative game, arbitration scheme, equilibrium, mixed strategies.
Document Type: Article
UDC: 519.7
BBC: 22.18
Language: Russian
Citation: Alexander E. Mentcher, “On a discrete arbitration procedure with quadratic payoff function”, Mat. Teor. Igr Pril., 4:3 (2012), 51–57
Citation in format AMSBIB
\Bibitem{Men12}
\by Alexander~E.~Mentcher
\paper On a~discrete arbitration procedure with quadratic payoff function
\jour Mat. Teor. Igr Pril.
\yr 2012
\vol 4
\issue 3
\pages 51--57
\mathnet{http://mi.mathnet.ru/mgta88}
Linking options:
  • https://www.mathnet.ru/eng/mgta88
  • https://www.mathnet.ru/eng/mgta/v4/i3/p51
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическая теория игр и её приложения
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024