Matematicheskaya Teoriya Igr i Ee Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Teor. Igr Pril.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskaya Teoriya Igr i Ee Prilozheniya, 2012, Volume 4, Issue 2, Pages 96–123 (Mi mgta83)  

This article is cited in 2 scientific papers (total in 2 papers)

The joint axiomatization of the prenucleolus and the Dutta-Ray solution for convex games

Elena B. Yanovskaya

St. Peterbutg Institute for Economics and Mathematics RAS
Full-text PDF (489 kB) Citations (2)
References:
Abstract: Most of cooperative TU game solutions are covariant with respect to positive linear transformations of individual utilities. However, this property does not take into account interpersonal comparisons of players' payoffs. The constrained egalitarian solution defined by Dutta and Ray [4] for the class of convex TU games, being not covariant, served as a pretext to studying non-covariant solutions. In the paper a weakening of covariance is given in such a manner that, together with some other properties, it characterizes only two solutions – the prenucleolus and the Dutta–Ray solution – on the class of convex TU games.
Keywords: cooperative game, restricted cooperation, prenucleolus, coalitional structure.
Document Type: Article
UDC: 518.9
BBC: 22.18
Language: Russian
Citation: Elena B. Yanovskaya, “The joint axiomatization of the prenucleolus and the Dutta-Ray solution for convex games”, Mat. Teor. Igr Pril., 4:2 (2012), 96–123
Citation in format AMSBIB
\Bibitem{Yan12}
\by Elena~B.~Yanovskaya
\paper The joint axiomatization of the prenucleolus and the Dutta-Ray solution for convex games
\jour Mat. Teor. Igr Pril.
\yr 2012
\vol 4
\issue 2
\pages 96--123
\mathnet{http://mi.mathnet.ru/mgta83}
Linking options:
  • https://www.mathnet.ru/eng/mgta83
  • https://www.mathnet.ru/eng/mgta/v4/i2/p96
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическая теория игр и её приложения
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024