Matematicheskaya Teoriya Igr i Ee Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Teor. Igr Pril.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskaya Teoriya Igr i Ee Prilozheniya, 2011, Volume 3, Issue 4, Pages 23–48 (Mi mgta68)  

The prenucleolus of games with restricted cooperation

Ilya V. Katsev, Elena B. Yanovskaya

St. Petersburg Institute for Economics and Mathematics RAS
References:
Abstract: A cooperative game with restricted cooperation is a triple $(N,v,\Omega)$, where $N$ is a finite set of players, $\Omega\subset2^N$, $N\in\Omega$ is a collection of feasible coalitions, $v\colon\Omega\to\mathbb R$ is a characteristic function. The definition implies that if $\Omega=2^N$, then the game $(N,v,\Omega)=(N,v)$ is a classical cooperative game with transferable utilities (TU). The class of all games with restricted cooperation $\mathcal G^r$ with an arbitrary universal set of players is considered. The prenucleolus for the class is defined in the same way as for classical TU games. Necessary and sufficient conditions on a collection $\Omega$ providing existence and singlevaluedness of the prenucleoli for the class $\mathcal G^r$ are found Axiomatic characterizations of the prenucleolus for games with two-type collections $\Omega$ generated by coalitional structures are given.
Keywords: cooperative game, restricted cooperation, prenucleolus, coalitional structure.
Document Type: Article
UDC: 518.9
BBC: 22.18
Language: Russian
Citation: Ilya V. Katsev, Elena B. Yanovskaya, “The prenucleolus of games with restricted cooperation”, Mat. Teor. Igr Pril., 3:4 (2011), 23–48
Citation in format AMSBIB
\Bibitem{KatYan11}
\by Ilya~V.~Katsev, Elena~B.~Yanovskaya
\paper The prenucleolus of games with restricted cooperation
\jour Mat. Teor. Igr Pril.
\yr 2011
\vol 3
\issue 4
\pages 23--48
\mathnet{http://mi.mathnet.ru/mgta68}
Linking options:
  • https://www.mathnet.ru/eng/mgta68
  • https://www.mathnet.ru/eng/mgta/v3/i4/p23
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическая теория игр и её приложения
    Statistics & downloads:
    Abstract page:452
    Full-text PDF :263
    References:53
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024