Matematicheskaya Teoriya Igr i Ee Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Teor. Igr Pril.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskaya Teoriya Igr i Ee Prilozheniya, 2023, Volume 15, Issue 2, Pages 3–17 (Mi mgta320)  

About multistage transportation model and sufficient conditions for its potentiality

Evgeniya V. Gasnikovaa, Alexander V. Gasnikovbac, Demyan V. Yarmoshika, Meruza B. Kubentayevaa, Mikhail I. Persiianovca, Irina V. Podlipnovaa, Ekaterina V. Kotlyarovaa, Ilya A. Sklonina, Elena D. Podobnayaa, Vladislav V. Matyukhina

a Moscow Institute of Physics and Technology
b Caucasus Mathematical Center
c Institute for Information Transmission Problems of RAS
References:
Abstract: Multistage modeling of traffic flows began to actively develop since the 70s of the last century. Transportation modeling packages were created, which are based on a set of convex optimization problems, whose sequential solution (with appropriate feedback mechanism) converges to the desired equilibrium distribution. An alternative way is to try to find such a general convex optimization problem, the solution of which would give the desired equilibrium. In this paper, we attempt to find sufficient conditions to guarantee that the alternative path will be successful. In particular, the paper has shown that one of the blocks of a multistage model can use a stable dynamics model (rather than the generally accepted Beckmann model), combined with the possibility to choose different types of users and vehicles.
Keywords: network equilibrium model, combined model, four-stage approach, convex optimization, stable dymanics model.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 0714-2020-0005
Received: 04.05.2023
Revised: 05.06.2023
Accepted: 15.06.2023
Document Type: Article
UDC: 519.853.62
BBC: 22.18
Language: Russian
Citation: Evgeniya V. Gasnikova, Alexander V. Gasnikov, Demyan V. Yarmoshik, Meruza B. Kubentayeva, Mikhail I. Persiianov, Irina V. Podlipnova, Ekaterina V. Kotlyarova, Ilya A. Sklonin, Elena D. Podobnaya, Vladislav V. Matyukhin, “About multistage transportation model and sufficient conditions for its potentiality”, Mat. Teor. Igr Pril., 15:2 (2023), 3–17
Citation in format AMSBIB
\Bibitem{GasGasYar23}
\by Evgeniya~V.~Gasnikova, Alexander~V.~Gasnikov, Demyan~V.~Yarmoshik, Meruza~B.~Kubentayeva, Mikhail~I.~Persiianov, Irina~V.~Podlipnova, Ekaterina~V.~Kotlyarova, Ilya~A.~Sklonin, Elena~D.~Podobnaya, Vladislav~V.~Matyukhin
\paper About multistage transportation model and sufficient conditions for its potentiality
\jour Mat. Teor. Igr Pril.
\yr 2023
\vol 15
\issue 2
\pages 3--17
\mathnet{http://mi.mathnet.ru/mgta320}
Linking options:
  • https://www.mathnet.ru/eng/mgta320
  • https://www.mathnet.ru/eng/mgta/v15/i2/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическая теория игр и её приложения
    Statistics & downloads:
    Abstract page:176
    Full-text PDF :96
    References:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024