Matematicheskaya Teoriya Igr i Ee Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Teor. Igr Pril.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskaya Teoriya Igr i Ee Prilozheniya, 2022, Volume 14, Issue 2, Pages 99–122 (Mi mgta304)  

On Stackelberg equilibrium in the sense of program strategies in Volterra functional operator games

Andrey V. Chernovab

a Nizhnii Novgorod State University
b Nizhnii Novgorod State Technical University
References:
Abstract: For a nonlinear Volterra functional operator equation controlled by two players with the help of finite dimensional program controls with integral objective functionals we prove existence of Stackelberg equilibrium (in the style of M.S. Nikol'skiy). On this way we use our formerly proved results on continuous dependence of the state and functionals on finite dimensional controls and also classical Weierstrass theorem. The property of being singleton for the minimizer set of the first player is proved by the scheme of M.S. Nikol'skiy applied earlier for a linear ordinary differential equation.
Keywords: nonlinear Volterra functional operator equation, existence of Stackelberg equilibrium.
Received: 20.10.2021
Revised: 07.02.2022
Accepted: 16.05.2022
Bibliographic databases:
Document Type: Article
UDC: 517.988+517.977.8
BBC: 22.18
Language: Russian
Citation: Andrey V. Chernov, “On Stackelberg equilibrium in the sense of program strategies in Volterra functional operator games”, Mat. Teor. Igr Pril., 14:2 (2022), 99–122
Citation in format AMSBIB
\Bibitem{Che22}
\by Andrey~V.~Chernov
\paper On Stackelberg equilibrium in the sense of program strategies in Volterra functional operator games
\jour Mat. Teor. Igr Pril.
\yr 2022
\vol 14
\issue 2
\pages 99--122
\mathnet{http://mi.mathnet.ru/mgta304}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4459161}
Linking options:
  • https://www.mathnet.ru/eng/mgta304
  • https://www.mathnet.ru/eng/mgta/v14/i2/p99
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическая теория игр и её приложения
    Statistics & downloads:
    Abstract page:147
    Full-text PDF :32
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024