Matematicheskaya Teoriya Igr i Ee Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Teor. Igr Pril.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskaya Teoriya Igr i Ee Prilozheniya, 2022, Volume 14, Issue 2, Pages 64–75 (Mi mgta302)  

This article is cited in 1 scientific paper (total in 1 paper)

Choice of mixed strategy in matrix game with nature by Hurwitz criterion

Stepan Yu. Ponomareva, Alexandr B. Khutoretskiib

a National Research University ''Higher School of Economics''
b Novosibirsk National Research University
Full-text PDF (114 kB) Citations (1)
References:
Abstract: The article solves the problem of choosing an optimal, by the Hurwitz criterion, mixed strategy for arbitrary matrix game against nature. We reduce the problem to solving $n$ linear programming problems (where $n$ is the number of scenarios). As far as we know, this is a new result. It can be used to make decisions in uncertain environments, if the game situation is repeated many times, or physical mixture of pure strategies is realizable.
Keywords: uncertainty, decision making, game against nature, Hurwitz criterion, mixed strategy, linear programming.
Received: 13.11.2021
Revised: 22.02.2022
Accepted: 16.05.2022
Bibliographic databases:
Document Type: Article
UDC: 519.816, 519.832
BBC: 22.18
Language: Russian
Citation: Stepan Yu. Ponomarev, Alexandr B. Khutoretskii, “Choice of mixed strategy in matrix game with nature by Hurwitz criterion”, Mat. Teor. Igr Pril., 14:2 (2022), 64–75
Citation in format AMSBIB
\Bibitem{PonKhu22}
\by Stepan~Yu.~Ponomarev, Alexandr~B.~Khutoretskii
\paper Choice of mixed strategy in matrix game with nature by Hurwitz criterion
\jour Mat. Teor. Igr Pril.
\yr 2022
\vol 14
\issue 2
\pages 64--75
\mathnet{http://mi.mathnet.ru/mgta302}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4459159}
Linking options:
  • https://www.mathnet.ru/eng/mgta302
  • https://www.mathnet.ru/eng/mgta/v14/i2/p64
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическая теория игр и её приложения
    Statistics & downloads:
    Abstract page:90
    Full-text PDF :126
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024