Matematicheskaya Teoriya Igr i Ee Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Teor. Igr Pril.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskaya Teoriya Igr i Ee Prilozheniya, 2022, Volume 14, Issue 1, Pages 85–101 (Mi mgta297)  

Nonmonotonically rewarded job scheduling

Maxim A. Savchenko

MSU Faculty of Computational Mathematics and Cybernetics
References:
Abstract: This paper describes new model of job scheduling problem generalized for nonmonotonical reward functions. Importance of informational asymmetry is shown for conflict in consideration, leading to connection with «theory of conspiracies». Structurally consistent equilibria is demostrated to be acceptable as solution concept.
Keywords: job scheduling, informational asymmetry, nonbinding agreements.
Received: 21.01.2021
Revised: 26.11.2021
Accepted: 10.01.2022
Bibliographic databases:
Document Type: Article
UDC: 519.83
BBC: 22.18
Language: Russian
Citation: Maxim A. Savchenko, “Nonmonotonically rewarded job scheduling”, Mat. Teor. Igr Pril., 14:1 (2022), 85–101
Citation in format AMSBIB
\Bibitem{Sav22}
\by Maxim~A.~Savchenko
\paper Nonmonotonically rewarded job scheduling
\jour Mat. Teor. Igr Pril.
\yr 2022
\vol 14
\issue 1
\pages 85--101
\mathnet{http://mi.mathnet.ru/mgta297}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4407210}
Linking options:
  • https://www.mathnet.ru/eng/mgta297
  • https://www.mathnet.ru/eng/mgta/v14/i1/p85
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическая теория игр и её приложения
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024