Matematicheskaya Teoriya Igr i Ee Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Teor. Igr Pril.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskaya Teoriya Igr i Ee Prilozheniya, 2022, Volume 14, Issue 1, Pages 3–20 (Mi mgta294)  

Sequential equilibria in signaling games

Alexander A. Vasin, Irina Yu. Seregina

Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics
References:
Abstract: The paper considers Bayesian multi-stage signaling games. Previously formulated for extensive-form games, concepts of sequential equilibrium, separating equilibrium and pooling equilibrium are specified, and calculating methods for these equilibria are also discussed. A competitive collision model with signals indicating rivals’ states is studied as a specific example. We determine conditions for existence of separating and pooling equilibria with ordered competition, in which the competition object goes to one of the rivals without a rigid encounter. Model parameters ranges of the equilibria existence are also determined.
Keywords: multi-stage game, signaling game, ordered competition, separating equilibrium, pooling equilibrium.
Received: 19.06.2021
Revised: 26.08.2021
Accepted: 10.12.2021
Bibliographic databases:
Document Type: Article
UDC: 519.83
BBC: 22.18
Language: Russian
Citation: Alexander A. Vasin, Irina Yu. Seregina, “Sequential equilibria in signaling games”, Mat. Teor. Igr Pril., 14:1 (2022), 3–20
Citation in format AMSBIB
\Bibitem{VasSer22}
\by Alexander~A.~Vasin, Irina~Yu.~Seregina
\paper Sequential equilibria in signaling games
\jour Mat. Teor. Igr Pril.
\yr 2022
\vol 14
\issue 1
\pages 3--20
\mathnet{http://mi.mathnet.ru/mgta294}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4407207}
Linking options:
  • https://www.mathnet.ru/eng/mgta294
  • https://www.mathnet.ru/eng/mgta/v14/i1/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическая теория игр и её приложения
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025