Matematicheskaya Teoriya Igr i Ee Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Teor. Igr Pril.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskaya Teoriya Igr i Ee Prilozheniya, 2017, Volume 9, Issue 2, Pages 3–38 (Mi mgta197)  

This article is cited in 3 scientific papers (total in 3 papers)

Positional voting methods satisfying the weak mutual majority and Condorcet loser principles

Aleksei Yu. Kondratyev

Institute of Applied Mathematical Research Karelian Research Center of RAS
Full-text PDF (236 kB) Citations (3)
References:
Abstract: We consider a voting problem, where the personal preferences of electors are defined by the ranked lists of the candidates. For the social choice functions we propose positional domination principles (WPD, PD), which is closely related to the scoring rules. Also we formulate a weak mutual majority principle (WMM), which is stronger than the majority principle, but weaker than the mutual majority principle (MM). We construct two modifications for the positional median rule, which satisfy the Condorcet loser principle. The WPD and WMM principles are shown to be fulfilled for the first modification, and the PD and MM principles for the second modification. We prove that there is no rule to satisfy both WPD and MM principles.
Keywords: positional voting method, social choice function, weak mutual majority, Condorcet loser principle, median rule, positional domination.
Funding agency Grant number
Russian Humanitarian Science Foundation 15-02-00352_а
Russian Foundation for Basic Research 16-51-55006_ГФЕН_а
English version:
Automation and Remote Control, 2018, Volume 79, Issue 8, Pages 1489–1514
DOI: https://doi.org/10.1134/S0005117918080106
Bibliographic databases:
Document Type: Article
UDC: 519.81
BBC: 22.18
Language: Russian
Citation: Aleksei Yu. Kondratyev, “Positional voting methods satisfying the weak mutual majority and Condorcet loser principles”, Mat. Teor. Igr Pril., 9:2 (2017), 3–38; Autom. Remote Control, 79:8 (2018), 1489–1514
Citation in format AMSBIB
\Bibitem{Kon17}
\by Aleksei~Yu.~Kondratyev
\paper Positional voting methods satisfying the weak mutual majority and Condorcet loser principles
\jour Mat. Teor. Igr Pril.
\yr 2017
\vol 9
\issue 2
\pages 3--38
\mathnet{http://mi.mathnet.ru/mgta197}
\transl
\jour Autom. Remote Control
\yr 2018
\vol 79
\issue 8
\pages 1489--1514
\crossref{https://doi.org/10.1134/S0005117918080106}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000441743800010}
Linking options:
  • https://www.mathnet.ru/eng/mgta197
  • https://www.mathnet.ru/eng/mgta/v9/i2/p3
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическая теория игр и её приложения
    Statistics & downloads:
    Abstract page:303
    Full-text PDF :385
    References:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024