Matematicheskaya Teoriya Igr i Ee Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Teor. Igr Pril.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskaya Teoriya Igr i Ee Prilozheniya, 2017, Volume 9, Issue 1, Pages 45–61 (Mi mgta194)  

On the model of the best bilateral two-stage mutual choice

Sergei I. Dotsenkoa, Anna A. Ivashkob

a National Taras Shevchenko University of Kyiv, Faculty of Computer Science and Cybernetics
b Institute of Applied Mathematical Research, Karelian Research Center of RAS
References:
Abstract: A mutual choice model with two types of agents, who want to make a couple with opposite side agents is investigated. Unlike classical best-choice models two agents make a couple only by mutual agreement. Two statements are considered: natural mating and artificial selection. In the first case the Nash equilibrium is determined, in the second case the optimal selection routine is found. Several versions of the problem and incomplete information scenario are considered.
Keywords: mutual choice, population, natural mating, selection, Nash equilibrium.
Funding agency Grant number
Russian Foundation for Basic Research 16-51-55006
Russian Humanitarian Science Foundation 15-02-00352
Document Type: Article
UDC: 519.83
BBC: 22.18
Language: Russian
Citation: Sergei I. Dotsenko, Anna A. Ivashko, “On the model of the best bilateral two-stage mutual choice”, Mat. Teor. Igr Pril., 9:1 (2017), 45–61
Citation in format AMSBIB
\Bibitem{DotIva17}
\by Sergei~I.~Dotsenko, Anna~A.~Ivashko
\paper On the model of the best bilateral two-stage mutual choice
\jour Mat. Teor. Igr Pril.
\yr 2017
\vol 9
\issue 1
\pages 45--61
\mathnet{http://mi.mathnet.ru/mgta194}
Linking options:
  • https://www.mathnet.ru/eng/mgta194
  • https://www.mathnet.ru/eng/mgta/v9/i1/p45
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическая теория игр и её приложения
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024