Matematicheskaya Teoriya Igr i Ee Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Teor. Igr Pril.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskaya Teoriya Igr i Ee Prilozheniya, 2016, Volume 8, Issue 4, Pages 3–13 (Mi mgta186)  

This article is cited in 7 scientific papers (total in 7 papers)

The pursuit-evasion game on the 1-skeleton graph of a regular polyhedron. II

Abdulla A. Azamova, Atamurat Sh. Kuchkarovab, Azamat G. Holboyevb

a Institute of Mathematics of the National University of Uzbekistan, Tashkent, Uzbekistan
b Tashkent Institute of Architecture and Civil Engineering, Tashkent, Uzbekistan
Full-text PDF (212 kB) Citations (7)
References:
Abstract: Part II of the paper considers a game between a group of $n$ pursuers and one evader that move along the $1$-Skeleton graph $\mathbf{M}$ of regular polyhedrons of three types in the spaces $\mathbb{R}^d$, $d\geqslant 3$. Like in Part I, the goal is to find an integer $N(\mathbf{M})$ with the following property: if $n\geqslant N(\mathbf{M})$, then the group of pursuers wins the game; if $n<N(\mathbf{M})$, the evader wins. It is shown that $N(\mathbf{M})=2$ for the $d$-dimensional simplex or cocube (a multidimensional analog of octahedron) and $N(\mathbf{M})=[d/2]+1$ for the $d$-dimensional cube.
Keywords: pursuit-evasion game, approach problem, evasion problem, positional strategy, counterstrategy, exact capture, regular polyhedron, one-dimensional skeleton, graph.
English version:
Automation and Remote Control, 2019, Volume 80, Issue 1, Pages 164–170
DOI: https://doi.org/10.1134/S0005117919010144
Document Type: Article
UDC: 517.97
BBC: 22.18
Language: Russian
Citation: Abdulla A. Azamov, Atamurat Sh. Kuchkarov, Azamat G. Holboyev, “The pursuit-evasion game on the 1-skeleton graph of a regular polyhedron. II”, Mat. Teor. Igr Pril., 8:4 (2016), 3–13; Autom. Remote Control, 80:1 (2019), 164–170
Citation in format AMSBIB
\Bibitem{AzaKucHol16}
\by Abdulla~A.~Azamov, Atamurat~Sh.~Kuchkarov, Azamat~G.~Holboyev
\paper The pursuit-evasion game on the 1-skeleton graph of a regular polyhedron.~II
\jour Mat. Teor. Igr Pril.
\yr 2016
\vol 8
\issue 4
\pages 3--13
\mathnet{http://mi.mathnet.ru/mgta186}
\transl
\jour Autom. Remote Control
\yr 2019
\vol 80
\issue 1
\pages 164--170
\crossref{https://doi.org/10.1134/S0005117919010144}
Linking options:
  • https://www.mathnet.ru/eng/mgta186
  • https://www.mathnet.ru/eng/mgta/v8/i4/p3
    Cycle of papers
    This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическая теория игр и её приложения
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024