Matematicheskaya Teoriya Igr i Ee Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Teor. Igr Pril.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskaya Teoriya Igr i Ee Prilozheniya, 2016, Volume 8, Issue 2, Pages 3–27 (Mi mgta177)  

This article is cited in 4 scientific papers (total in 4 papers)

On $k$-accessibility of the core of $TU$-cooperative game

Valery A. Vasil'ev

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Full-text PDF (519 kB) Citations (4)
References:
Abstract: In the paper, a strengthening of the core-accessibility theorem by the author is proposed. The results obtained demonstrate that for any $k \geq 1,$ and for any imputation $x$ outside of the nonempty core, a $k$-monotonic sequential improvement trajectory $\{x_r\}_{r=0}^{\infty}$ with $x_0 = x$ exists, which converges to some element of the core. Here, $k$-monotonicity means that for any $r > 0,$ an imputation $x_r$ dominates any preceding imputation $x_{r-m}$ with $r \geq m$ and $m \in [1, k].$ Note that the core-accessibility theorem, mentioned above, was established for the case $k = 1$.
To show that $TU$-property is essential to provide $k$-accessibility of the core, we propose an example of $NTU$-cooperative game $G$ with a "black hole" being a closed subset $B \subseteq G(N)$ that doesn't intersect the core $C(\alpha_G)$ and contains all the sequential improvement trajectories originating at any point $x \in B$.
Keywords: domination, core, dynamical system, generalized Lyapunov function, $k$-accessibility.
Funding agency Grant number
Russian Foundation for Basic Research 13-06-00311_а
Russian Humanitarian Science Foundation 13-02-00226
English version:
Automation and Remote Control, 2017, Volume 78, Issue 12, Pages 2248–2264
DOI: https://doi.org/10.1134/S000511791712013X
Bibliographic databases:
Document Type: Article
UDC: 519.83
BBC: 22.18
Language: Russian
Citation: Valery A. Vasil'ev, “On $k$-accessibility of the core of $TU$-cooperative game”, Mat. Teor. Igr Pril., 8:2 (2016), 3–27; Autom. Remote Control, 78:12 (2017), 2248–2264
Citation in format AMSBIB
\Bibitem{Vas16}
\by Valery~A.~Vasil'ev
\paper On $k$-accessibility of the core of $TU$-cooperative game
\jour Mat. Teor. Igr Pril.
\yr 2016
\vol 8
\issue 2
\pages 3--27
\mathnet{http://mi.mathnet.ru/mgta177}
\transl
\jour Autom. Remote Control
\yr 2017
\vol 78
\issue 12
\pages 2248--2264
\crossref{https://doi.org/10.1134/S000511791712013X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000417864100013}
Linking options:
  • https://www.mathnet.ru/eng/mgta177
  • https://www.mathnet.ru/eng/mgta/v8/i2/p3
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическая теория игр и её приложения
    Statistics & downloads:
    Abstract page:254
    Full-text PDF :83
    References:40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024