Matematicheskaya Teoriya Igr i Ee Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Teor. Igr Pril.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskaya Teoriya Igr i Ee Prilozheniya, 2016, Volume 8, Issue 1, Pages 4–26 (Mi mgta172)  

This article is cited in 4 scientific papers (total in 4 papers)

Stochastic coalitional better-response dynamics and stable equilibrium

Konstantin Avrachenkov, Vikas Vikram Singh

INRIA Sophia-Antipolis Mediterranee
Full-text PDF (678 kB) Citations (4)
References:
Abstract: We consider coalition formation among players in an $n$-player finite strategic game over infinite horizon. At each time a randomly formed coalition makes a joint deviation from a current action profile such that at new action profile all the players from the coalition are строго benefited. Such deviations define a coalitional better-response (CBR) dynamics that is in general stochastic. The CBR dynamics either converges to a $\mathcal{K}$-stable equilibrium or becomes stuck in a closed cycle. We also assume that at each time a selected coalition makes mistake in deviation with small probability that add mutations (perturbations) into CBR dynamics. We prove that all $\mathcal{K}$-stable equilibria and all action profiles from closed cycles, that have minimum stochastic potential, are stochastically stable. Similar statement holds for strict $\mathcal{K}$-stable equilibrium. We apply the CBR dynamics to study the dynamic formation of the networks in the presence of mutations. Under the CBR dynamics all strongly stable networks and closed cycles of networks are stochastically stable.
Keywords: strong Nash equilibrium, coalitional better-response, stochastic stability, network formation games, strongly stable networks.
English version:
Automation and Remote Control, 2016, Volume 77, Issue 12, Pages 2227–2238
DOI: https://doi.org/10.1134/S0005117916120110
Bibliographic databases:
Document Type: Article
UDC: 519.711.7
BBC: 22.1
Language: Russian
Citation: Konstantin Avrachenkov, Vikas Vikram Singh, “Stochastic coalitional better-response dynamics and stable equilibrium”, Mat. Teor. Igr Pril., 8:1 (2016), 4–26; Autom. Remote Control, 77:12 (2016), 2227–2238
Citation in format AMSBIB
\Bibitem{AvrSin16}
\by Konstantin~Avrachenkov, Vikas~Vikram~Singh
\paper Stochastic coalitional better-response dynamics and stable equilibrium
\jour Mat. Teor. Igr Pril.
\yr 2016
\vol 8
\issue 1
\pages 4--26
\mathnet{http://mi.mathnet.ru/mgta172}
\transl
\jour Autom. Remote Control
\yr 2016
\vol 77
\issue 12
\pages 2227--2238
\crossref{https://doi.org/10.1134/S0005117916120110}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000390021400011}
Linking options:
  • https://www.mathnet.ru/eng/mgta172
  • https://www.mathnet.ru/eng/mgta/v8/i1/p4
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическая теория игр и её приложения
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024