Matematicheskaya Teoriya Igr i Ee Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Teor. Igr Pril.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskaya Teoriya Igr i Ee Prilozheniya, 2015, Volume 7, Issue 4, Pages 71–97 (Mi mgta169)  

Guaranteed escaping strategies

Igor I. Shevchenkoab

a TINRO-Center
b Far East Federal University
References:
Abstract: To generate evasion strategies and evaluate corresponding guaranteed miss distances from $E$ to $\mathcal P_{j_1,\ldots,j_n} = \{P_{j_1},\ldots, P_{j_n}\}$, $ n \geq 3$, we set up two basic problems for the players with simple motions. In the first one, $E$ maximizes the miss distance to $P_a\in \mathcal P_{j_1,\ldots,j_n}$ when she moves along a given straight-line. In the second one, $E$ seeks to cross the intercept $P_b P_c$ just once and to maximize the miss distance to either of $P_b$ and $P_c$ during the infinite period of manoeuvring. In the game with a group of three or more pursuers, for a given history, we evaluate the minimum of the guaranteed miss distances when $E$ passing between $P_b$ and $ P_c$, $\forall b,c \in \{j_1,\ldots,j_n\}, b\not = c,$ and the guaranteed miss distance to $P_a$, $\forall a \in \{j_1,\ldots,j_n\}\backslash\{b,c\}$. After that, we are able to choose the best alternative for assigning $b$ and $c$.
Keywords: maximizing miss distances, passing between two slower pursuers, alternative games, memory strategies.
English version:
Automation and Remote Control, 2017, Volume 78, Issue 10, Pages 1892–1908
DOI: https://doi.org/10.1134/S0005117917100125
Document Type: Article
UDC: 519.9
BBC: 22.18
Language: Russian
Citation: Igor I. Shevchenko, “Guaranteed escaping strategies”, Mat. Teor. Igr Pril., 7:4 (2015), 71–97; Autom. Remote Control, 78:10 (2017), 1892–1908
Citation in format AMSBIB
\Bibitem{She15}
\by Igor~I.~Shevchenko
\paper Guaranteed escaping strategies
\jour Mat. Teor. Igr Pril.
\yr 2015
\vol 7
\issue 4
\pages 71--97
\mathnet{http://mi.mathnet.ru/mgta169}
\transl
\jour Autom. Remote Control
\yr 2017
\vol 78
\issue 10
\pages 1892--1908
\crossref{https://doi.org/10.1134/S0005117917100125}
Linking options:
  • https://www.mathnet.ru/eng/mgta169
  • https://www.mathnet.ru/eng/mgta/v7/i4/p71
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическая теория игр и её приложения
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024