Matematicheskaya Teoriya Igr i Ee Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Teor. Igr Pril.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskaya Teoriya Igr i Ee Prilozheniya, 2015, Volume 7, Issue 2, Pages 85–116 (Mi mgta160)  

$\alpha$-systems of differential inclusions and their unification

Vladimir N. Ushakov, Sergey A. Brykalov, Grigory V. Parshikov

Institute of Mathematics and Mechanics
References:
Abstract: In this article, $\alpha$-systems of differential inclusions are introduced on a bounded time segment $[t_0,\vartheta]$ and $\alpha$-weakly invariant sets in $[t_0,\vartheta] \times \mathbb R^n$ are defined, where $\mathbb R^n$ is a phase space of the differential inclusions. Problems are studied connected with bringing the motions (trajectories) of differential inclusions in an $\alpha$-system to a given compact set $M \subset \mathbb R^n$ at the time $\vartheta$. Questions are discussed of finding the solvability set $W \subset [t_0, \vartheta] \times \mathbb R^n$ of problem of bringing the motions of $\alpha$-system to $M$ and calculating the maximal $\alpha$-weakly invariant set $W^c \subset [t_0, \vartheta] \times \mathbb R^n$. The notion is introduced of quasi-Hamiltonian of $\alpha$-system ($\alpha$-Hamiltonian), which we see as important for studying problems of bringing motions of $\alpha$-system to $M$.
Keywords: differential inclusion, guidance problem, Hamiltonian, invariance, weak invariance.
English version:
Automation and Remote Control, 2016, Volume 77, Issue 8, Pages 1480–1499
DOI: https://doi.org/10.1134/S0005117916080142
Bibliographic databases:
Document Type: Article
UDC: 517.977.1
BBC: 22.18
Language: Russian
Citation: Vladimir N. Ushakov, Sergey A. Brykalov, Grigory V. Parshikov, “$\alpha$-systems of differential inclusions and their unification”, Mat. Teor. Igr Pril., 7:2 (2015), 85–116; Autom. Remote Control, 77:8 (2016), 1480–1499
Citation in format AMSBIB
\Bibitem{UshBryPar15}
\by Vladimir~N.~Ushakov, Sergey~A.~Brykalov, Grigory~V.~Parshikov
\paper $\alpha$-systems of differential inclusions and their unification
\jour Mat. Teor. Igr Pril.
\yr 2015
\vol 7
\issue 2
\pages 85--116
\mathnet{http://mi.mathnet.ru/mgta160}
\transl
\jour Autom. Remote Control
\yr 2016
\vol 77
\issue 8
\pages 1480--1499
\crossref{https://doi.org/10.1134/S0005117916080142}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000382146700014}
Linking options:
  • https://www.mathnet.ru/eng/mgta160
  • https://www.mathnet.ru/eng/mgta/v7/i2/p85
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическая теория игр и её приложения
    Statistics & downloads:
    Abstract page:257
    Full-text PDF :71
    References:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024