Matematicheskaya Teoriya Igr i Ee Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Teor. Igr Pril.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskaya Teoriya Igr i Ee Prilozheniya, 2014, Volume 6, Issue 2, Pages 100–121 (Mi mgta136)  

The bounded core for games with restricted cooperation

Elena B. Yanovskaya

St. Petersburg Institute for Economics and Mathematics RAS
References:
Abstract: A game with restricted cooperation is a triple $(N,v,\Omega)$, where $N$ is a finite set of players, $\Omega\subset2^N$ is a non-empty collection of feasible coalitions such that $N\in\Omega$, and $v\colon\Omega\to\mathbb R$ is a characteristic function. Unlike the classical TU games the cores for games with restricted cooperation may be unbounded. Recently Grabisch and Sudhölter [9] proposed a new concept – the bounded core – that for assigns to a game $(N,v,\Omega)$ the union of all bounded faces of the core. The bounded core can be empty even the core is not empty. An axiomatization of the bounded core for the class $\mathcal G^r$ with restricted cooperation is given with the help of axioms efficiency, boundedness, bilateral consistency, a weakening of converse consistency, and ordinality. The last axiom states that the property of a payoff vector to belong to a solution only depends on the signs of the corresponding components of the excess vectors, but not on their values. Another axiomatization of the core is given for the subclass $\mathcal G^r_{bc}\subset\mathcal G^r$ of games with non-empty bounded cores. The characterizing axioms are non-emptiness, covariance, boundedness, bilateral consistency, and superadditivity.
Keywords: cooperative game, solution, core, bounded core, axiomatic characterization.
English version:
Automation and Remote Control, 2016, Volume 77, Issue 9, Pages 1699–1710
DOI: https://doi.org/10.1134/S0005117916090162
Bibliographic databases:
Document Type: Article
UDC: 518.9
BBC: 22.18
Language: Russian
Citation: Elena B. Yanovskaya, “The bounded core for games with restricted cooperation”, Mat. Teor. Igr Pril., 6:2 (2014), 100–121; Autom. Remote Control, 77:9 (2016), 1699–1710
Citation in format AMSBIB
\Bibitem{Yan14}
\by Elena~B.~Yanovskaya
\paper The bounded core for games with restricted cooperation
\jour Mat. Teor. Igr Pril.
\yr 2014
\vol 6
\issue 2
\pages 100--121
\mathnet{http://mi.mathnet.ru/mgta136}
\transl
\jour Autom. Remote Control
\yr 2016
\vol 77
\issue 9
\pages 1699--1710
\crossref{https://doi.org/10.1134/S0005117916090162}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000383104300016}
Linking options:
  • https://www.mathnet.ru/eng/mgta136
  • https://www.mathnet.ru/eng/mgta/v6/i2/p100
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическая теория игр и её приложения
    Statistics & downloads:
    Abstract page:532
    Full-text PDF :146
    References:49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024