Abstract:
Proceeding from an eleven-step reaction scheme, complex dynamic behaviour has been simulated for a Belousov–Zhabotinsky oscillator, in particular a transition from steady state to quasiperiodic and bursting oscillations, and futher on to regular relaxation oscillation via a complicated sequence of alternating periodic and chaotic regimes.
Document Type:
Article
Language: English
Citation:
O. V. Noskov, A. D. Karavaev, V. P. Kazakov, S. I. Spivak, “Chaos in a Simulated Belousov-Zhabotinsky Reaction”, Mendeleev Commun., 4:3 (1994), 82–85
Linking options:
https://www.mathnet.ru/eng/mendc5161
https://www.mathnet.ru/eng/mendc/v4/i3/p82
This publication is cited in the following 4 articles:
Judita Buchlovská Nagyová, Branislav Jansík, Marek Lampart, “Detection of embedded dynamics in the Györgyi-Field model”, Sci Rep, 10:1 (2020)
Marek Lampart, Tomáš Martinovič, “Chaotic behavior of the CML model with respect to the state and coupling parameters”, J Math Chem, 57:6 (2019), 1670
O. V. Noskov, A. D. Karavaev, V. P. Kazakov, S. I. Spivak, “Quasiperiodic to bursting oscillations transition in the model of the Belousov–Zhabotinsky reaction”, Mendeleev Commun., 7:1 (1997), 27–30
G. F. Novikov, M. N. Koval'chuk, N. A. Tikhonina, R. Guglielmetti, A. Samat, M. V. Alfimov, “Detection of an oscillation stage during the photolysis of toluene solutions of spiropiperidinebenzopyran by oscillations of the quality factor of the cavity resonator”, Russ Chem Bull, 44:9 (1995), 1651