Loading [MathJax]/jax/output/SVG/config.js
Mendeleev Communications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mendeleev Commun.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mendeleev Communications, 2018, Volume 28, Issue 1, Pages 41–43
DOI: https://doi.org/10.1016/j.mencom.2018.01.013
(Mi mendc1657)
 

This article is cited in 12 scientific papers (total in 12 papers)

Communications

Causes of the double maximum conductivity of nanocomposite polymer electrolytes for lithium power sources

O. V. Yarmolenko, K. G. Khatmullina, G. R. Baymuratova, G. Z. Tulibaeva, L. M. Bogdanova, A. F. Shestakov

Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region, Russian Federation
Abstract: Causes of the double maximum conductivity of nanocomposite net electrolytes in the presence of SiO2 nanoparticles (7nm) were revealed by differential scanning calorimetry and quantum-chemical modeling. The first maximum results from increasing the dissociation of lithium salt, whereas the second one is due to the formation of conductive paths involving SiO2 nanoparticles.
Document Type: Article
Language: English


Citation: O. V. Yarmolenko, K. G. Khatmullina, G. R. Baymuratova, G. Z. Tulibaeva, L. M. Bogdanova, A. F. Shestakov, “Causes of the double maximum conductivity of nanocomposite polymer electrolytes for lithium power sources”, Mendeleev Commun., 28:1 (2018), 41–43
Linking options:
  • https://www.mathnet.ru/eng/mendc1657
  • https://www.mathnet.ru/eng/mendc/v28/i1/p41
  • This publication is cited in the following 12 articles:
    1. Pooja Rawat, R.K. Prajapati, Gulshan Kumar Meena, A.L. Saroj, “Enhancing the performance of Chitosan/PVP based bio-polymer electrolyte incorporated with SiO2 nano-particles in dye-sensitized solar cell”, Materials Science and Engineering: B, 308 (2024), 117603  crossref
    2. Xi Wu, Xiaohua Jie, Xinghua Liang, Jin Wang, Shufang Wu, “Ultraviolet-thermal coupling cross-linked fabricate polymer/ceramic composite solid electrolyte for room temperature quasi solid state lithium ion batteries”, Journal of Energy Storage, 77 (2024), 109644  crossref
    3. Nikita A. Slesarenko, Alexander V. Chernyak, Kyunsylu G. Khatmullina, Guzaliya R. Baymuratova, Alena V. Yudina, Galiya Z. Tulibaeva, Alexander F. Shestakov, Vitaly I. Volkov, Olga V. Yarmolenko, “Nanocomposite Polymer Gel Electrolyte Based on TiO2 Nanoparticles for Lithium Batteries”, Membranes, 13:9 (2023), 776  crossref
    4. Kyunsylu G. Khatmullina, Nikita A. Slesarenko, Alexander V. Chernyak, Guzaliya R. Baymuratova, Alena V. Yudina, Mikhail P. Berezin, Galiya Z. Tulibaeva, Anna A. Slesarenko, Alexander F. Shestakov, Olga V. Yarmolenko, “New Network Polymer Electrolytes Based on Ionic Liquid and SiO2 Nanoparticles for Energy Storage Systems”, Membranes, 13:6 (2023), 548  crossref
    5. Vitaly I. Volkov, Olga V. Yarmolenko, Alexander V. Chernyak, Nikita A. Slesarenko, Irina A. Avilova, Guzaliya R. Baymuratova, Alena V. Yudina, “Polymer Electrolytes for Lithium-Ion Batteries Studied by NMR Techniques”, Membranes, 12:4 (2022), 416  crossref
    6. Alexander V. Chernyak, Nikita A. Slesarenko, Anna A. Slesarenko, Guzaliya R. Baymuratova, Galiya Z. Tulibaeva, Alena V. Yudina, Vitaly I. Volkov, Alexander F. Shestakov, Olga V. Yarmolenko, “Effect of the Solvate Environment of Lithium Cations on the Resistance of the Polymer Electrolyte/Electrode Interface in a Solid-State Lithium Battery”, Membranes, 12:11 (2022), 1111  crossref
    7. A. V. Yudina, G. R. Baymuratova, A. V. Mumyatov, G. Z. Tulibaeva, E. N. Kabachkov, P. A. Troshin, A. F. Shestakov, O. V. Yarmolenko, “Addition of SiO2 to the operation of a polyimide cathode in a sodium battery”, Mendeleev Commun., 32:5 (2022), 655–657  mathnet  crossref
    8. A. V. Yudina, G. R. Baymuratova, G. Z. Tulibaeva, A. L. Litvinov, A. F. Shestakov, O. V. Yarmolenko, “Conductivity increase effect in nanocomposite polymer gel electrolytes: manifestation in the IR spectra”, Russ Chem Bull, 69:8 (2020), 1455  crossref
    9. M. M. Gafurov, M. A. Akhmedov, K. Sh. Rabadanov, N. S. Shabanov, A. M. Amirov, S. I. Suleymanov, M. B. Ataev, “Study of the structure and electrical conductivity of lithium-conducting polymer electrolytes based on PEG-1500—LiX (X = SCN, N(CF3SO2)2)”, Russ Chem Bull, 69:8 (2020), 1463  crossref
    10. G. R. Baymuratova, A. V. Chernyak, A. A. Slesarenko, G. Z. Tulibaeva, V. I. Volkov, O. V. Yarmolenko, “Specific Features of Ion Transport in New Nanocomposite Gel Electrolytes Based on Cross-Linked Polymers and Silica Nanoparicles”, Russ J Electrochem, 55:6 (2019), 529  crossref
    11. Simranjit Singh, Narinder Arora, Kamaldeep Paul, Rajiv Kumar, Rajesh Kumar, “FTIR and rheological studies of PMMA-based nano-dispersed gel polymer electrolytes incorporated with LiBF4 and SiO2”, Ionics, 25:4 (2019), 1495  crossref
    12. G. R. Baymuratova, A. A. Slesarenko, A. V. Yudina, O. V. Yarmolenko, “Conducting properties of nanocomposite polymer electrolytes based on polyethylene glycol diacrylate and SiO2 nanoparticles at the interface with a lithium electrode”, Russ Chem Bull, 67:9 (2018), 1648  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mendeleev Communications
    Statistics & downloads:
    Abstract page:28
    Full-text PDF :7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025