Loading [MathJax]/jax/output/SVG/config.js
Matematicheskaya Biologiya i Bioinformatika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Biolog. Bioinform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskaya Biologiya i Bioinformatika, 2019, Volume 14, Issue 1, Pages 94–125
DOI: https://doi.org/10.17537/2019.14.94
(Mi mbb374)
 

This article is cited in 17 scientific papers (total in 17 papers)

Mathematical Modeling

Chiral peculiar properties of self-organization of diphenylalanine peptide nanotubes: modeling of structure and properties

V. S. Bystrova, P. S. Zelenovskiybc, A. S. Nuraevab, S. Kopylc, O. A. Zhulyabinad, V. A. Tverdislovd

a Institute of Mathematical Problems of Biology RAS, Pushchino, Russia
b School of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg, Russia
c CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
d Faculty of Physics, Lomonosov Moscow State University
References:
Abstract: The structure and properties of diphenylalanine peptide nanotubes based on phenylalanine were investigated by various molecular modeling methods. The main approaches were semi-empirical quantum-chemical methods (PM3 and AM1), and molecular mechanical ones. Both the model structures and the structures extracted from their experimental crystallographic databases obtained by X-ray methods were examined. A comparison of optimized model structures and structures obtained by naturally-occurring self-assembly showed their important differences depending on D- and L-chirality. In both the cases, the effect of chirality on the results of self-assembly of diphenylalanine peptide nanotubes was established: peptide nanotubes based on the D-diphenylalanine (D-FF) has high condensation energy E0 in transverse direction and forms thicker and shorter peptide nanotubes bundles, than that based on L-diphenylalanine (L-FF). A topological difference was established: model peptide nanotubes were optimized into structures consisting of rings, while naturally self-assembled peptide nanotubes consisted of helical coils. The latter were different for the original L-FF and D-FF. They formed helix structures in which the chirality sign changes as the level of the macromolecule hierarchy raises. Total energy of the optimal distances between two units are deeper for L-FF (–1.014 eV) then for D-FF (–0.607 eV) for ring models, while for helix coil are approximately the same and have for L-FF (–6.18 eV) and for D-FF (–6.22 eV) by PM3 method; for molecular mechanical methods energy changes are of the order of 2–3 eV for both the cases. A topological transition between a ring and a helix coil of peptide nanotube structures is discussed: self-assembled natural helix structures are more stable and favourable, they have lower energy in optimal configuration as compared with ring models by a value of the order of 1 eV for molecular mechanical methods and 5 eV for PM3 method.
Key words: diphenylalanine, peptide nanotube, molecular modeling, semi-empirical methods, DFT, ab initio methods, molecular mechanics, chirality, topology, self-assembly.
Funding agency Grant number
Fundação para a Ciência e a Tecnologia Ref. UID/CTM/50011/2013
POCI-01-0145-FEDER-007679
PTDC/QEQ-QAN/6373/2014
PTDC/CTM-CTM/31679/2017
Federación Española de Enfermedades Raras PT2020
Part of this work was developed as part of the CICECO-Aveiro Materials Institute project, POCI-01-0145-FEDER-007679 funded from Fundação para a Ciência e a Tecnologia (FCT) Ref. UID/CTM/50011/2013, and funded from national funds through FCT/MEC, and co-funded by FEDER in accordance with the PT2020 Partnership Agreement. P.Z. thanks the project FCT PTDC/QEQ-QAN/6373/2014. S.K. thanks the project FCT PTDC/CTM-CTM/31679/2017.
Received 10.02.2019, 04.03.2019, Published 12.03.2019
Document Type: Article
UDC: 530.1:537.226.33:541.1:577:681.2
Language: English
Citation: V. S. Bystrov, P. S. Zelenovskiy, A. S. Nuraeva, S. Kopyl, O. A. Zhulyabina, V. A. Tverdislov, “Chiral peculiar properties of self-organization of diphenylalanine peptide nanotubes: modeling of structure and properties”, Mat. Biolog. Bioinform., 14:1 (2019), 94–125
Citation in format AMSBIB
\Bibitem{BysZelNur19}
\by V.~S.~Bystrov, P.~S.~Zelenovskiy, A.~S.~Nuraeva, S.~Kopyl, O.~A.~Zhulyabina, V.~A.~Tverdislov
\paper Chiral peculiar properties of self-organization of diphenylalanine peptide nanotubes: modeling of structure and properties
\jour Mat. Biolog. Bioinform.
\yr 2019
\vol 14
\issue 1
\pages 94--125
\mathnet{http://mi.mathnet.ru/mbb374}
\crossref{https://doi.org/10.17537/2019.14.94}
Linking options:
  • https://www.mathnet.ru/eng/mbb374
  • https://www.mathnet.ru/eng/mbb/v14/i1/p94
  • This publication is cited in the following 17 articles:
    1. P. Yasotha, V. Kalaiselvi, B. Blessymol, C. Vidya, S. Tamilarasu, “Synthesis and exploring the structural formation, different spectroscopic profiles, physicochemical and biological investigations of hydroxyapatite doped titanium nanocomposite using sol-gel process”, Journal of the Indian Chemical Society, 2025, 101603  crossref
    2. V. Bystrov, S. Filippov, I. Likhachev, O. Ledeneva, E. Belova, “SIMULATION AND COMPUTER STUDY OF THE CHIRAL PROPERTIES OF PEPTIDE NANOTUBES BASED ON DILEUCINE”, Russian Journal of Biological Physics and Chemisrty, 8:4 (2024), 424  crossref
    3. Vladimir S. Bystrov, “Molecular self-assembled helix peptide nanotubes based on some amino acid molecules and their dipeptides: molecular modeling studies”, J Mol Model, 30:8 (2024)  crossref
    4. Hema Dinesh Barnana, Syed A. M. Tofail, Krittish Roy, Charlie O'Mahony, Veronika Hidaši Turiničová, Maroš Gregor, Ehtsham ul Haq, “Biodielectrics: old wine in a new bottle?”, Front. Bioeng. Biotechnol., 12 (2024)  crossref
    5. V. S. Bystrov, E. V. Paramonova, O. R. Ledeneva, E. V. Belova, P. S. Zelenovskiy, S. A. Kopyl, V. M. Fridkin, “Polar and photoelectronic properties of dileucine and diisoleucine nanotubes”, Ferroelectrics, 618:5 (2024), 1236  crossref
    6. I. V. Likhachev, V. S. Bystrov, S. V. Filippov, “Assembly of a diphenylalanine peptide nanotube by molecular dynamics methods”, Mat. Biolog. Bioinform., 18:1 (2023), 251–266  mathnet  mathnet  crossref
    7. Vladimir Bystrov, Ilya Likhachev, Sergey Filippov, Ekaterina Paramonova, “Molecular Dynamics Simulation of Self-Assembly Processes of Diphenylalanine Peptide Nanotubes and Determination of Their Chirality”, Nanomaterials, 13:13 (2023), 1905  crossref
    8. V. A. Tverdislov, A. E. Sidorova, O. E. Bagrova, E. V. Belova, V. S. Bystrov, N. T. Levashova, A. O. Lutsenko, E. V. Semenova, D. K. Shpigun, “Chirality As a Symmetric Basis of Self-Organization of Biomacromolecules”, BIOPHYSICS, 67:5 (2022), 673  crossref
    9. Vladimir Bystrov, Ilya Likhachev, Alla Sidorova, Sergey Filippov, Aleksey Lutsenko, Denis Shpigun, Ekaterina Belova, “Molecular Dynamics Simulation Study of the Self-Assembly of Phenylalanine Peptide Nanotubes”, Nanomaterials, 12:5 (2022), 861  crossref
    10. A.E. Sidorova, V.S. Bystrov, A.O. Lutsenko, D.K. Shpigun, E.V. Belova, “METOD OTsENKI KhIRALNOSTI BELKOV I FENILALANINOVYKh NANOTRUBOK KAK EFFEKTIVNYI INSTRUMENT NANOBIOINZhENERII”, NanoRus, 15:2 (2022), 96  crossref
    11. A.K. Bystrov, Proceedings of the International Conference “Mathematical Biology and Bioinformatics”, 9, Proceedings of the International Conference “Mathematical Biology and Bioinformatics”, 2022  crossref
    12. V. Bystrov, A. Sidorova, A. Lutsenko, D. Shpigun, E. Malyshko, A. Nuraeva, P. Zelenovskiy, S. Kopyl, A. Kholkin, “Modeling of self-assembled peptide nanotubes and determination of their chirality sign based on dipole moment calculations”, Nanomaterials, 11:9 (2021), 2415  crossref  isi
    13. V. S. Bystrov, J. Coutinho, O. A. Zhulyabina, S. A. Kopyl, P. S. Zelenovskiy, A. S. Nuraeva, V. A. Tverdislov, S. V. Filippov, A. L. Kholkin, V. Ya. Shur, “Modeling and physical properties of diphenylalanine peptide nanotubes containing water molecules”, Ferroelectrics, 574:1 (2021), 78–91  crossref  isi
    14. I. V. Likhachev, V. S. Bystrov, “Sborka fenilalaninovoi nanotrubki molekulyarno-dinamicheskim manipulyatorom”, Matem. biologiya i bioinform., 16:2 (2021), 244–255  mathnet  crossref  elib
    15. Bystrov V.S., Coutinho J., Zelenovskiy P.S., Nuraeva A.S., Kopyl S., Filippov V S., Zhulyabina O.A., Tverdislov V.A., “Molecular Modeling and Computational Study of the Chiral-Dependent Structures and Properties of the Self-Assembling Diphenylalanine Peptide Nanotubes, Containing Water Molecules”, J. Mol. Model., 26:11 (2020), 326  crossref  isi  scopus
    16. Zelenovskiy P., Yuzhakov V., Nuraeva A., Kornev M., Shur V.Ya., Kopyl S., Kholkin A., Vasilev S., Tofail S.A.M., “The Effect of Water Molecules on Elastic and Piezoelectric Properties of Diphenylalanine Microtubes”, IEEE Trns. Dielectr. Electr. Insul., 27:5 (2020), 1474–1477  crossref  isi  scopus
    17. Bystrov V., Coutinho J., Zelenovskiy P., Nuraeva A., Kopyl S., Zhulyabina O., Tverdislov V., “Structures and Properties of the Self-Assembling Diphenylalanine Peptide Nanotubes Containing Water Molecules: Modeling and Data Analysis”, Nanomaterials, 10:10 (2020), 1999  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:162
    Full-text PDF :171
    References:36
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025