Abstract:
We use a Markov chain Monte Carlo (MCMC) method to quantify uncertainty in parameters of the heterogeneous linear compartmental model of cell population growth, described by a system of ordinary differential equations. This model allows division number-dependent rates of cell proliferation and death and describes the rate of changes in the numbers of cells having undergone j divisions. The experimental data set specifies the following characteristics of the kinetics of human T lymphocyte proliferation assay in vitro: the total number of live cells and dead but not disintegrated cells and the number of cells divided j times. Our goal is to compare results of the MCMC analysis of the uncertainty in the best-fit parameter estimates with the ones obtained earlier, using the variance-covariance approach, the profile-likelihood based approach and the bootstrap technique. We show that the computed posterior probability density functions are Gaussian for most of the model parameters and they are close to Gaussian ones for other parameters except one. We present posterior uncertainty limits for the model solution and new observations.
Key words:
cell population dynamics, Markov chain Monte Carlo analysis, CFSE assay, heterogenous compartmental model, parameter estimation, uncertainty.
This work was supported by the Russian Foundation for Basic Research (Grant number 17-01-00636) to G.B.
Received 14.09.2018, Published 03.10.2018
Document Type:
Article
UDC:
519.245:577.27
Language: English
Citation:
T. Luzyanina, G. Bocharov, “Markov chain Monte Carlo parameter estimation of the ODE compartmental cell growth model”, Mat. Biolog. Bioinform., 13:2 (2018), 376–391
\Bibitem{LuzBoc18}
\by T.~Luzyanina, G.~Bocharov
\paper Markov chain Monte Carlo parameter estimation of the ODE compartmental cell growth model
\jour Mat. Biolog. Bioinform.
\yr 2018
\vol 13
\issue 2
\pages 376--391
\mathnet{http://mi.mathnet.ru/mbb343}
\crossref{https://doi.org/10.17537/2018.13.376}
Linking options:
https://www.mathnet.ru/eng/mbb343
https://www.mathnet.ru/eng/mbb/v13/i2/p376
This publication is cited in the following 9 articles:
Audra Hinson, Spiro Papoulis, Lucas Fiet, Margaret Knight, Priscilla Cho, Brielle Szeltner, Ioannis Sgouralis, David Talmy, “A model of algal‐virus population dynamics reveals underlying controls on material transfer”, Limnology & Oceanography, 68:1 (2023), 165
Yikai Liu, Ruozheng Wu, Aimin Yang, “Research on Medical Problems Based on Mathematical Models”, Mathematics, 11:13 (2023), 2842
Kernel Prieto, M. Victoria Chávez–Hernández, Jhoana P. Romero–Leiton, Jeffrey Shaman, “On mobility trends analysis of COVID–19 dissemination in Mexico City”, PLoS ONE, 17:2 (2022), e0263367
Giulia Belluccini, Martín López-García, Grant Lythe, Carmen Molina-París, “Counting generations in birth and death processes with competing Erlang and exponential waiting times”, Sci Rep, 12:1 (2022)
Kernel Prieto, Simone Lolli, “Current forecast of COVID-19 in Mexico: A Bayesian and machine learning approaches”, PLoS ONE, 17:1 (2022), e0259958
Jhoana P. Romero-Leiton, Kernel Prieto, Daniela Reyes-Gonzalez, Ayari Fuentes-Hernandez, “Optimal control and Bayes inference applied to complex microbial communities”, MBE, 19:7 (2022), 6860
K. Prieto, J. P. Romero-Leiton, “Current forecast of HIV/AIDS using Bayesian inference”, Nat. Resour. Model., 34:4, SI (2021), e12332
E. Ibarguen-Mondragon, Kernel-Prieto, S. Patricia Hidalgo-Bonilla, “A model on bacterial resistance considering a generalized law of mass action for plasmid replication”, J. Biol. Syst., 29:02 (2021), 375–412
Eisenkolb I., Jensch A., Eisenkolb K., Kramer A., Buchholz P.C.F., Pleiss J., Spiess A., Radde N.E., “Modeling of Biocatalytic Reactions: a Workflow For Model Calibration, Selection, and Validation Using Bayesian Statistics”, AICHE J., 66:4 (2020), e16866