Matematicheskaya Biologiya i Bioinformatika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Biolog. Bioinform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskaya Biologiya i Bioinformatika, 2017, Volume 12, Issue 2, Pages 435–445
DOI: https://doi.org/10.17537/2017.12.435
(Mi mbb304)
 

This article is cited in 2 scientific papers (total in 2 papers)

Bioinformatics

Projection to latent structures as a strategy for peptides microarray data analysis

D. S. Anisimova, S. V. Podlesnykha, E. A. Kolosovaa, D. N. Shcherbakova, V. D. Petrovab, S. S. Johnstonc, A. F. Lazarevb, N. M. Oskorbind, A. I. Shapovalac, M. A. Ryazanova

a Russian-American Anti-Cancer Center, Altai State University, Barnaul, Russia
b Altai Branch of Blokhin N.N. Russian Cancer Research Center, Barnaul, Russia
c Center for Innovations in Medicine, Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
d Department of Theoretical Cybernetics and Applied Mathematics, Altai State University, Barnaul, Russia
References:
Abstract: Currently various microarrays platforms containing nucleotides, proteins, peptides, glycans and other molecules are used in biomedical research. Number and density of immobilized molecules on microarrays are constantly increasing. Microarray data handling requires optimization of methods for their analysis. Peptide microarrays data analysis has certain characteristics that require non-conventional statistical methods. In this paper we present the results of antibody repertoire analysis in breast cancer patients sera utilizing microchips containing 330,000 peptides. We investigated methods for space dimension reduction such as projective methods and methods for selection of informative features. We have shown that method of projection to latent structures can detect an effective data dimension, reduce overfitting of the model and increase the quality of object recognition. Accuracy of the experimental results was assessed with the ROC-curve; the best quality was achieved with three latent structures without normalization and reduction of total numbers of peptides.
Key words: microarrays, peptides, normalization, latent variables, clustering, ROC, method of projection to latent structures.
Received 04.07.2017, Published 29.11.2017
Document Type: Article
UDC: 57.087
Language: Russian
Citation: D. S. Anisimov, S. V. Podlesnykh, E. A. Kolosova, D. N. Shcherbakov, V. D. Petrova, S. S. Johnston, A. F. Lazarev, N. M. Oskorbin, A. I. Shapoval, M. A. Ryazanov, “Projection to latent structures as a strategy for peptides microarray data analysis”, Mat. Biolog. Bioinform., 12:2 (2017), 435–445
Citation in format AMSBIB
\Bibitem{AniPodKol17}
\by D.~S.~Anisimov, S.~V.~Podlesnykh, E.~A.~Kolosova, D.~N.~Shcherbakov, V.~D.~Petrova, S.~S.~Johnston, A.~F.~Lazarev, N.~M.~Oskorbin, A.~I.~Shapoval, M.~A.~Ryazanov
\paper Projection to latent structures as a strategy for peptides microarray data analysis
\jour Mat. Biolog. Bioinform.
\yr 2017
\vol 12
\issue 2
\pages 435--445
\mathnet{http://mi.mathnet.ru/mbb304}
\crossref{https://doi.org/10.17537/2017.12.435}
Linking options:
  • https://www.mathnet.ru/eng/mbb304
  • https://www.mathnet.ru/eng/mbb/v12/i2/p435
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:222
    Full-text PDF :65
    References:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024