Loading [MathJax]/jax/output/SVG/config.js
Matematicheskaya Biologiya i Bioinformatika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Biolog. Bioinform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskaya Biologiya i Bioinformatika, 2007, Volume 2, Issue 2, Pages 188–318 (Mi mbb26)  

This article is cited in 17 scientific papers (total in 17 papers)

Mathematical Modeling

Mathematical models of tuberculosis extension and control of it (review)

K. K. Avilov, A. A. Romanyukha

Institute of Numerical Mathematics, Russian Academy of Sciences
References:
Abstract: The survey considers mathematical models of epidemiological processes, which determine the dynamics of tuberculosis morbidity. The first models of tuberculosis epidemiology were developed and published in the early sixties of the last century. These works and the works of seventies have formulated and described peculiarities of tuberculosis epidemiology, which are: long-lasting latent phase of the infection, very low probability of total deliverance from the infection, possibility of quick growth of the disease after introduction of infection, and dependence of probability of activation of the infection on the condition of the vehicle of the disease and duration of the latent stage. The most important sphere of application for mathematical models of tuberculosis epidemiology is estimation of efficiency of the control strategies for this disease. A new tide of interest in mathematical models of spread of tuberculosis is connected with growth of morbidity rate in developing countries because of HIV epidemics and emergence of mycobacterium strains, which are resistant to one or several medications. The models of the 80-s and 90-s are devoted to interaction of HIV infection and mycobacteria, to formation and spread of drug-resistant strains. Much attention is given to investigation of properties of the models, to estimation of parameters, and comparison with real data. During this period models became important means for working out and argumentation of activity of both national and international organizations, which are responsible for fight against this infection. For convenience sake a unified system of designation of variables and parameters is used in the survey, block schematic diagrams of the simulated processes and estimations of values of parameters are given; assumptions and presuppositions having been employed in construction of the models are discussed. The work under consideration is the first complete survey of the models of this class up to the year 2006.
Key words: tuberculosis, mathematical modeling, epidemiology, mathematical models, survey, mycobacteria.
Document Type: Article
UDC: 519.7:614.4
Language: Russian
Citation: K. K. Avilov, A. A. Romanyukha, “Mathematical models of tuberculosis extension and control of it (review)”, Mat. Biolog. Bioinform., 2:2 (2007), 188–318
Citation in format AMSBIB
\Bibitem{AviRom07}
\by K.~K.~Avilov, A.~A.~Romanyukha
\paper Mathematical models of tuberculosis extension and control of it (review)
\jour Mat. Biolog. Bioinform.
\yr 2007
\vol 2
\issue 2
\pages 188--318
\mathnet{http://mi.mathnet.ru/mbb26}
Linking options:
  • https://www.mathnet.ru/eng/mbb26
  • https://www.mathnet.ru/eng/mbb/v2/i2/p188
  • This publication is cited in the following 17 articles:
    1. Gerasimov A., Semenycheva I., Belaia O., Volchkova E., Gorobchenko A., “Estimation of the Value of the Covid-19 Basic Reproductive Number and the Effect of Anti-Epidemic Measures and “Seasonal Factor” on This Value”, Period. Tche Quim., 18:38 (2021), 149–163  crossref  isi
    2. S. I. Kabanikhin, O. I. Krivorot'ko, “Optimization methods for solving inverse immunology and epidemiology problems”, Comput. Math. Math. Phys., 60:4 (2020), 580–589  mathnet  crossref  crossref  isi  elib
    3. A. N. Gerasimov, “The dynamics of the epidemic process with antibiotic-resistant variant of the pathogen”, Math. Models Comput. Simul., 11:6 (2019), 884–893  mathnet  crossref  crossref  elib
    4. K. K. Avilov, A. A. Romanyukha, E. M. Belilovskii, S. E. Borisov, “Sravnenie skhem modelirovaniya estestvennogo techeniya tuberkuleza organov dykhaniya”, Matem. biologiya i bioinform., 14:2 (2019), 570–587  mathnet  crossref
    5. V. Ya. Kiselevskaya-Babinina, T. E. Sannikova, A. A. Romanyukha, A. S. Karkach, “Modelirovanie vliyanii gendernykh razlichii na zabolevaemost tuberkulezom”, Matem. biologiya i bioinform., 13:2 (2018), 308–321  mathnet  crossref
    6. N. V. Pertsev, “Issledovanie reshenii matematicheskikh modelei epidemicheskikh protsessov, obladayuschikh obschimi strukturnymi svoistvami”, Sib. zhurn. industr. matem., 18:2 (2015), 85–98  mathnet  crossref  mathscinet  elib
    7. A. I. Ilin, S. I. Kabanikhin, O. I. Krivorotko, “Ob opredelenii parametrov modelei, opisyvaemykh sistemami nelineinykh differentsialnykh uravnenii”, Sib. elektron. matem. izv., 11 (2014), 62–76  mathnet
    8. N. V. Pertsev, B. Yu. Pichugin, A. N. Pichugina, “Issledovanie asimptoticheskogo povedeniya reshenii nekotorykh modelei epidemicheskikh protsessov”, Matem. biologiya i bioinform., 8:1 (2013), 21–48  mathnet
    9. Kitarova G.S., “Matematicheskoe modelirovanie kori v kyrgyzstane”, Vestnik Kyrgyzsko-Rossiiskogo slavyanskogo universiteta, 12:1 (2012), 113–115  elib
    10. Vyun V.I., Eremenko T.K., Kuzmenko G.E., Mikhnenko Yu.A., “Ob odnom podkhode k prognozirovaniyu epidemiologicheskoi obstanovki po grippu-orvi s ispolzovaniem vremennykh ryadov”, Matematicheskie mashiny i sistemy, 1:2 (2011), 131–136  elib
    11. Leonenko V.N., Loginov K.K., “Vychislitelnye aspekty imitatsionnogo modelirovaniya rasprostraneniya tuberkulëza”, Nauchno-tekhnicheskii vestn. Sankt-Peterburgskogo gos. un-ta informatsionnykh tekhnologii, mekhaniki i optiki, 68:4 (2010), 99–103  elib
    12. J. Appl. Industr. Math., 4:3 (2010), 359–370  mathnet  crossref  mathscinet
    13. Pertsev N.V., Leonenko V.N., “Stochastic individual-based model of spread of tuberculosis”, Russian J. Numer. Anal. Math. Modelling, 24:4 (2009), 341–360  crossref  mathscinet  zmath  isi  elib  scopus
    14. O. A. Melnichenko, A. A. Romanyukha, “A model of tuberculosis epidemiology. Data analysis and estimation of parameters”, Math. Models Comput. Simul., 1:4 (2009), 428–444  mathnet  crossref  zmath
    15. Kasatkina B.C., “Dvustoronnie otsenki na resheniya stokhasticheskoi modeli rasprostraneniya tuberkuleza”, Vestn. Omskogo un-ta, 2008, no. 2, 19–23  zmath  elib
    16. Pertsev N.V., Romanyukha A.A., Kasatkina V.S., “Nelineinaya stokhasticheskaya model rasprostraneniya tuberkuleza”, Sistemy upravleniya i informatsionnye tekhnologii, 2008, no. 1.2(31), 246–250  elib
    17. Maslennikov B.I., Skvortsov A.V., “Matematicheskoe obespechenie informatsionno-analiticheskoi meditsinskoi sistemy”, Programmnye produkty i sistemy, 2008, no. 4, 54  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:1626
    Full-text PDF :984
    References:106
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025